The greening of jobs in Germany: First evidence from a text mining based index and employment register data

The 2018 GGSD Forum \& GGKP Annual Conference Session A: Effects of Green Growth Policies on Labour Markets

Paris
November 28, 2018

Societal

Numerous initiatives to foster transitions towards a greener, less carbon-intensive economy

\sumGreening of jobs?

No measurement instruments

Research

Porter/Van der Linde (1995)

 environmental regulations may promote innovation and thus improve competitiveness - as long as the regulations are designed well Acemoglu et al. $(2012,2016)$ a combination of environmental regulation and temporary research subsidies may lead to climate protection and sustainable long-run growth.> e.g. Jaffe/Palmer (1997)
regulations inherently lead to a loss of competitiveness

Contribution: I measure, describe and examine the greening of occupations and its associations with employment and wage growth in Germany.

Research questions
(1) How can the greening of occupations best be measured?
(2) a) How green are occupations in Germany?
b) Is there a greening of jobs in Germany?
(3) Do occupations with larger greenness/greening show larger employment and wage growth?

Literature review:

Identification approaches

- Output-based approach:

Identification by goods and services
e.g. Eurostat (2016), UN et al. (2016), Horbach/Janser (2016) , Blazejczak/Edler (2015), US BLS 2013), Proxy for number of green jobs: Turnover generated by green goods and services

- Mixture of output- \& process-based approach:

The process perspective ,identifies establishments that use environmentally friendly production processes and practices." Sommers (2013:5), see also Deschênes (2013), ILO $(2013,2015)$

- Task-based approach: Identification by occupational tasks inspired by the literature on technological change and emplyoment polarization (e.g. Autor et al. 2003 Autor 2013, Autor/Dorn al 2013, Goos et al 2014, Autor 2015 Consoli et al. (2016), Vona et al. (2016), Peters (2014), Bowen et al. (2018), Vona et al. (2018a/b)
"... the 'greenness' of an occupation is defined based on job-specific characteristicsnamely, engagement with environmental tasks-rather than being inferred from the portion of the workforce that is employed in the production of green goods or that uses particular green production processes." Vona et al. (2016)

Literature review:

Employment \& wage development

Germany

Edler/Blazejczak 2016

- 2.2 million people were working for environmental protection in Germany in 2012 Horbach/Janser (2016)
- Environmental establishments have slightly higher employment growth (+0.6 percentage points from 2009 to 2012
- Innovation and industry agglomeration foster employment growth in green firms. Nongreen firms show a smaller increase in employment, even if they are also innovative.
Antoni et al. (2016)
- Renewable energy wage premium of more than ten percent in construction/installation activities and architectural/engineering services.

USA

Bureau of Labor Statistics (2012)
O 3.1 million jobs associated with green goods and services production
Peters (2014)

- Occupations with at least one green task: 176
Vona et al. (2017)
o Share of green employment: 2-3\%.
- Geographical concentration of green jobs (changes over time), top green areas are high-tech areas.
o Green wage premium: about four percent
o Green employment is pro-cyclical
o One additional green job is associated with 4.2 (2.2 in the crisis period) new local jobs in non-tradable non-green activities.

Data

Research objectives and the associated project dataset

Link
Research
Data Center

Data
 BERUFENET - the occupational expert database

(-) https://berufenet.arbeitsagentur.de/berufenet/faces/index:path=null/suchergebnisse/kurzbeschreibung/b
© BERUFENET - Berufsinform... \times

Startseite > Suchergebnisse > Kurzbeschreibung > Kompetenzen

Ihre Auswah: Schomsteinfegerfin | Duale Ausbidung

Kompetenzen

Kernkompetenzen, die man während der Ausbildung erwirbt:

- Brandschutz
- Emissions- Immissionsschutz
- Feuerstättenschau
- Kundenberatung, -betreuung
- Messen

Weitere Kompetenzen, die für die Ausübung dieses Berufs bedeutsam sein konnen:

- Energieberatung
- Energieeinsparverordnung (EnEV)
- Energiespartechnik
- Feuerungs- und Schornsteinbau
- Gasfeuerungen
- Gefahrenabwehr (Pravention)
- Heizungstechnik
- Kachelofenbau
- Kaminöfen
- Kehren

Purposes of use

- for local employment agencies: information base for career guidance and job placement
- for the general public: information for vocational orientation

Content

- about 4,000 occupations about 8,000 requirements (Details)
- continuously edited and updated
- describes current occupations from A to Z
- Job descriptions
- Required qualifications and skills
o Eearning potential, related occupations etc.
- But: No green tasks information

Data: BERUFENET (Example)
 Occupation 'Chimney Sweep(er)'

Type	Requirement
Core requirements $\left(N_{\text {core }}=5\right)$	Fire safety, Emission/Immission control, Fireplace inspection, Customer advisory service, Customer care, Measurement
Additional requirements $\left(N_{a d d}=16\right)$	Energy consulting, Energy saving order (EnEV), Energy savings technology, Heating and chimney construction, Gas firings, Environmental law, Environment protection, Environmental technology

Data
 TEXTMINING

Dictionary-based Content Analysis (Regular Expressions, R TM-Package)
Project-specific text corpus
Sources: international studies, scientific literature, newspapers
Content: characteristic elements of activities and tasks in the 'green economy'

Data: Unweighted GOJI ${ }_{\text {core }}$
Example: Occupation 'Chimney Sweeper'

Type	Requirements	Greenness-Index (gi) Elements	
		gr_core 2014	r_{-}core $_{2014}$
Core	Fire safety	0	1
requirements	Emission/Immiss. control	1	1
($\mathrm{N}_{\text {core }}=5$)	Fireplace inspection	0	1
	Customer advisory service	0	1
	Measurement	0	1
		1	5

$$
\text { GOJI }_{\text {core }}=\frac{\sum g r_{-} \text {core }}{\text { occ }, \text { t }} \text { (GOJI } \text { core }=\frac{1}{5}=0.200
$$

Data: Unweighted GOJI ${ }_{\text {add }}$
Example: Occupation 'Chimney Sweeper'

Type	Requirements	Greenness-Index (gi) Elements		
			gr_add 2014	$r_{\text {_ }}$ add 2014
Additional	Energy consulting		1	1
requirements	Energy saving order (EnEV)		1	1
($\mathrm{Nadd}=16$)	Energy savings technology		1	1
	Heating and chimney construction		0	1
	Gas firings		0	1
	Danger defense (prevention)		0	1
	...		\ldots	\ldots
	Oil heatings		0	1
	Pellet heating systems		1	1
	Environmental law		1	1
		$\bar{\Sigma}$	8	16
	$\text { GOJI }_{\text {add }}=\frac{\sum g r_{-} a d d_{o c c, t}}{\sum r_{-} a d d_{o c c, t}}$		GOJI ${ }_{\text {add }}$	$=0.500$

Data: Unweighted GOJI $_{\text {total }}$
 Example: Occupation 'Chimney Sweeper'

Type	Requirements	Greenness-Index Elements	
		gr_core 2014	$r_{\text {_ }}$ core 2014
Core	Fire safety	0	1
requirements	Emission/Immiss. control	1	1
($\mathrm{N}=5$)	Fireplace inspection	0	1
	Customer advisory service	0	1
	Measurement	0	1
	Σ	1	5
Type	Requirements	Greenness-Ind	Ex Elements
		gr_add 2014	$r_{-} a^{\text {d }}$ d 2014
Additional	Energy consulting	1	1
requirements	Energy saving order (EnEV)	1	1
($\mathrm{N}=16$)	Energy savings technology	1	1
	Heating and chimney construction	0	1
	Gas firings	0	1
	Danger defense (prevention)	0	1

	Oil heatings	0	1
	Pellet heating systems	1	1
	Environmental law	1	1
		$\bar{\square} 8$	16

$$
\begin{aligned}
& \text { GOJI }_{\text {total }_{o c c 8 d, t}} \\
& =\frac{\sum g r_{-} \text {core }}{\text { occ } 8 d, t}+\sum g r_{-} a d d_{o c c 8 d, t} \\
& \sum r_{-} \text {core }_{o c c 8 d, t}+\sum r_{-} a d d_{o c c 8 d, t} \\
& =\frac{1+8}{5+16}=\frac{9}{21}=0.429
\end{aligned}
$$

Descriptives - Individual occ. level (8-digit level, KIdB 2010) Number of hits after matching keywords with green tasks

Descriptives: Goji ranking of individual occupations:
Top-4/Medium-4/Last-4 GOJI values in 2016 (Kldb2010, 8-digit)

Pos.	Occupational title (English translation)	GOJI $_{\text {total }}$	GOJI	GOre
GOJ ${ }_{\text {add }}$				
	Top 4			
1	Specialist - Environmental protection	$\mathbf{0 . 8 8 9}$	0.900	0.875
2	Environmental advisor	$\mathbf{0 . 8 5 0}$	0.833	0.857
3	Recycling specialist	$\mathbf{0 . 7 6 9}$	0.750	0.778
$\mathbf{4}$	Environmental auditor	$\mathbf{0 . 7 6 5}$	0.750	0.769
\ldots	Medium 4 (Median GOJI ${ }_{\text {total }}$: 0.083)			
389	Woodworking mechanic - Sawmill industry	$\mathbf{0 . 0 8 3}$	0.250	0.050
390	Standardization expert	$\mathbf{0 . 0 8 3}$	0.250	0.000
391	Master of hydraulic engineering	$\mathbf{0 . 0 8 3}$	0.182	0.000
392	Technician - Machine technology (process engineering)	$\mathbf{0 . 0 8 3}$	0.167	0.000
\ldots	Last 4			
782	Motor mechanic	$\mathbf{0 . 0 2 4}$	0.125	0.000
783	Engineer - Air-conditioning system technology	$\mathbf{0 . 0 2 4}$	0.043	0.000
784	Engineer - Refrigeration system technology	$\mathbf{0 . 0 2 4}$	0.037	0.000
785	Traffic construction engineer	$\mathbf{0 . 0 2 4}$	0.000	0.043

Descriptives - Individual occ. level (8-digit level, KIdB 2010)

Share of occupations with GOJI total >0 in 2012 and 2016

- green

- green 785
19.9\%

non-green 3,161
80.1\%
- non-green
- green(w)total >0
- non-green
- green(w)total >0

Descriptives

Occupational areas and their greenness of jobs

$I A B$

Classification title (KldB2010) Occupations in ...	GOJI core	GOJI ${ }_{\text {add }}$	GOJI $I_{\text {total }}$
A. Agriculture, forestry, farming \& gardening	0.042	0.063	0.056
B. Production of raw materials and goods \& manufacturing	0.003	0.017	0.012
C. Construction, architecture, surveying \& tech. build. serv.	0.046	0.058	0.063
D. Natural sciences, geography \& informatics	0.008	0.023	0.018
E. Traffic, logistics, safety \& security tourism	0.020	0.020	0.020
G. Business organization, accounting, law, administration	0.000	0.000	0.000
H. Health care, social sector, teaching \& education	0.001	0.002	0.001
I. Philology, literature, media, art, culture, design, humanities, soc. sciences \& economics	0.000	0.001	0.000

Descriptives

The regional distribution of the GOJI

GOJI ${ }_{\text {core }}$ at federal state level
(NUTS 1), weighted by employment

GOJI ${ }_{\text {core }} 2014$ at Federal state level (NUTS 1)

	0,006
	$0,007-0,006$
	0,007
	0,008
	0.009
	$0.01-0011$

GOJI ${ }_{\text {core }}$ at county level
(NUTS 3), weighted by employment

GOJI ${ }_{\text {core }} 2014$ at County level (NUTS 3)

0,007
0,008-0,009
$0,010-0,011$
$0,012-0,016$

Greening of jobs: ranking of individual occupations by GOJI ${ }_{\text {total }}$ Top-4/Medium-4/Last-4 GOJI values in 2016 (Kldb2010, 8-digit)

		GOJI $_{\text {total }}$		
Pos.	Occupational title (English translation)	Δ abs.	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 6}$
	Top 4			
1	Technician-Environ. protection technician (landscape ecol.)	$\mathbf{0 . 2 2 0}$	0.300	0.520
2	Technician-Waste technology	$\mathbf{0 . 2 1 2}$	0.407	0.619
3	Extension specialist (heat, cold and sound insulation work)	$\mathbf{0 . 1 9 9}$	0.176	0.375
$\mathbf{4}$	Wood preservation expert	$\mathbf{0 . 1 4 4}$	0.056	0.200
\ldots	Medium 4			
71	Dietary cook	$\mathbf{0 . 0 3 5}$	0.080	0.115
72	Specialist agricultural farmer—Agricultural technology	$\mathbf{0 . 0 3 5}$	0.056	0.091
73	Electronics techn.-Energy \& building services engineering	$\mathbf{0 . 0 3 5}$	0.042	0.077
74	Master chimney sweep	$\mathbf{0 . 0 3 5}$	0.238	0.273
\ldots	Last 4			
134	Helpers-Wood, wickerwork	$\mathbf{0 . 0 0 2}$	0.048	0.050
135	Engineer—Interior design	$\mathbf{0 . 0 0 2}$	0.040	0.042
136	Technician-Construction engineering	$\mathbf{0 . 0 0 2}$	0.038	0.040
137	Agricultural laboratory technician	$\mathbf{0 . 0 0 1}$	0.037	0.038

GOJI and employment growth: Estimation results

Dependent variables:	GREENNESS 2012 (level) OLS Full-time equivalents (pp, delta 2012-2016)		GREENING 2012-2016 (growth) FE Full-time equivalents (log, yearly panel 2012-2016)	
	(1)	(2)	(3)	(4)
$\begin{aligned} & \text { GOJI }_{\text {total }} \\ & \text { Green tasks total } \end{aligned}$	$\begin{gathered} \hline 0.238 * * * \\ (2.60) \end{gathered}$		$\begin{aligned} & -0.230 \\ & (-1.58) \end{aligned}$	
$\begin{aligned} & G O J I_{\text {core }} \\ & \text { Green core tasks } \end{aligned}$		$\begin{aligned} & -0.005 \\ & (-0.06) \end{aligned}$		$\begin{aligned} & -0.058 \\ & (-1.31) \end{aligned}$
$G O J I_{a d d}$ Green additional tasks		$\begin{gathered} 0.246 * * * \\ (2.72) \end{gathered}$		$\begin{aligned} & -0.102 \\ & (-1.05) \end{aligned}$
Constant	$\begin{aligned} & 0.430 \\ & (1.63) \end{aligned}$	$\begin{aligned} & 0.429 \\ & (1.60) \end{aligned}$	$\begin{gathered} 13.24 * * * \\ (22.60) \end{gathered}$	$\begin{gathered} 13.25 * * * \\ (22.59) \end{gathered}$

Control variables of occupational characteristics are included (employee, employer, employment, tasks, tools,				
(lagged) wage, regional, and sectoral characteristics). FE regression incl. time dummies for 2013-2016.				
N	1146	1146	5699	5699
R^{2}	0.491	0.492	0.613	0.613

If the GOJI ${ }_{\text {total }}$ or $\mathrm{GOJ}_{\text {add }}$ is higher by one pp , the employment growth is related with an increase of 0.238 or 0.246 pp respectively

The change of GOJI-values from 2012 to 2016 has no statistical significant correlation with employment growth.

Dependent variables:	GREENNESS 2012 (level) OLS Daily Wage (pp, delta 2012-2016)		```GREENING 2012-2016 (growth) FE Daily Wage (log, yearly panel 2012-2016)```	
$\begin{aligned} & \hline \text { GOJI }_{\text {total }} \\ & \text { Green tasks total } \end{aligned}$	$\begin{aligned} & \hline-0.009 \\ & (-0.17) \end{aligned}$		$\begin{gathered} \hline 0.098^{* *} \\ (2.01) \end{gathered}$	
$\begin{aligned} & \text { GOJI }_{\text {core }} \\ & \text { Green core tasks } \end{aligned}$		$\begin{gathered} 0.069 * * \\ (2.03) \end{gathered}$		$\begin{aligned} & 0.001 \\ & (0.01) \end{aligned}$
$G O J I_{a d d}$ Green additional tasks		$-0.083 *$ (-1.93)		$\begin{aligned} & 0.062 \\ & (1.35) \end{aligned}$
Constant	$\begin{aligned} & 0.018 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.014 \\ & (0.09) \end{aligned}$	$\begin{gathered} 5.747 * * * \\ (11.38) \end{gathered}$	$\begin{gathered} 5.733 * * * \\ (11.28) \end{gathered}$

Control variables of occupational characteristics are included (employee, employer, employment, tasks, tools,

regional, and sectoral characteristics). The FE regression also contains time dummies for the years 2013-2016.				
N	1137	1137	5702	5702
R^{2}	0.452	0.456	0.694	0.694

A GOJ ${ }_{\text {core }}$ larger by 1 pp is associated with an increase of wage growth by 0.069 pp , whereas a GOJI ${ }_{\text {add }}$ larger by 1 pp is related with a decrease of wage growth by 0.083 pp . wage growth by 0.098 pp .

A growth of $G O J_{\text {total }}$ by 1 pp between 2012 and 2016 is associated with an increase of
(1) The BERUFENET based Greenness-of-Jobs Index (GOJI) facilitates tackling descriptive and analytical research questions at occupational, sectoral and regional level.
(2) The paper shows a moderate greening of occupations and employment in Germany for 2012-2016.
(3) GOII and employment growth

Measured by the GOJI ${ }_{\text {total }}$ in 2012, the greenness of jobs is associated with a slight increase of employment growth. This is mainly drive by the level of GOJ ${ }_{\text {add }}$.
(4) GOJl and wage growth

Measured by the GOJI core in 2012, the greenness of jobs is associated with a slight increase of wage growth. Contrary, the greenness of jobs is correlated with a lower wage growth if I use GOJ ${ }_{\text {add }}$ for measuring the greenness of jobs.
The greening of jobs (change of GOJI ${ }_{\text {total }}$ between 2012 and 2016) is associated with an slight increase of wage growth.

Policy Implications (1/2)

(1) Using occupational content data and administrative employment data, it is possible to identify the greenness and greening of jobs without expensive surveys and new data sources.
(2) The descriptive analysis of the GOII distribution reveals a large heterogeneity between occupational aggregated, industries and regions.

Keep this variety in mind before policy implications are drawn:
If the promotion of green jobs is a policy target, it is more advisable to promote the transformation of existing occupations rather than to design new occupations.

Policy Implications (2/2)

(3) The economic significance of the results is relatively small in the short time period observed. However, this is not bad news at all, because the overall results of this presentation show that green transitions and labor market outcomes can even positively interrelate with each other.
(4) There is still a need to prevent threats of individuals to lose their employability through these transitions.

The most important objective for labor markets policy:
Support the green adaptation of occupations, employees, and employers to the changing needs of the labor market, e.g.

- continuous reforms of occupational contents and institutions, and
- the use of existing active labor market policy instruments (e.g. promotion of further training, retraining and life-long learning).

Thank you very much for your attention!

Markus Janser
markus.janser@iab.de

Backup

Data

Employment-weighted GOJI aggregates

Data

TEXTMINING - Word cloud

Frequency of

green tasks
dictionary keywords
weighted by
their appearance in

BERUFENET

requirements

Mülverbrennunung. thermische Ent $\begin{gathered}\text { Sitsorgung }\end{gathered}$
Dämmungen planen und berechen Rohre und Behälter dämmen
\qquad
Fahrplangestaltung Schienenverkehr Lüftungstechnik sondemzuil gonstruktionsbau RegionaltourismusUmweltanalytik
Abwassertechnik Fotovoltaik Embissionsschutz
Gundwasserschuz
Gebäudedämmung(Wärmeschutz)
Reocling Bausanierund
 Solathemie Umweltrecht tian wima Umweltschutz Umweltaudit Windkraftanlagen

cm Holzkunde
T. Holzbauteile Holzbearbeiten
nanasemem Gewässerschutz totzoemik
Ökologischer Anbau Kompostierung
Wärme- und Kältedämmung
Wasser-, Abwasseruntersuchung Abraikenbann, s-B
Baumpflege, Baumschnitt Elektro- und Hybridfahrzeuge Chemikalien-Klimaschutzverordnung

Data: Goji on aggregated occupational levels Aggregation from 8-digit level to 5-digit level
goji ${ }_{\text {core }, a d d, t o t a l}^{o c c 5 d, t} \left\lvert\,=\frac{\sum g o j i_{\text {core }, a d d, t o t a l}^{o c c 8 d \in 5 d, t}}{} N_{o c c 8 d \in 5 d, t}\right.$

Example of 'Occupations in renewable energy technology - complex tasks' 2014

KIdB 2010 8-digit	$\begin{aligned} & \text { KldB } \\ & 2010 \\ & \text { 5-digit } \end{aligned}$	Occupational title 2014 (8-digit)	Occupational types 2014 (5-digit)	$\begin{aligned} & \text { Emp } \\ & \text { 5_2014 } \end{aligned}$	Emp 8_2014 (estim.)	$\begin{aligned} & \text { gojicore } \\ & \mathbf{8} \mathbf{2 0 1 4} \end{aligned}$	gojicore 5_2014 (aggreg.)
26243-100	-26243	Solar technician			890.33	0.200	0.211
26243-101		Wind Energy Technician	Occupations in renewable energy tech-	2,671	890.33	0.100	
26243-108		Specialist solar technology	nology- complex tasks	Equa	$\begin{aligned} & 890.33 \\ & \text { stribution } \end{aligned}$	0.333 umption	

[^0]
Data: Employment-weighted GOJI

Aggregation from 5-digit level to higher aggregated levels

Aggregation at occupational level

$$
\boldsymbol{g o j} \boldsymbol{i}_{\boldsymbol{d} \boldsymbol{t}}=\sum_{\boldsymbol{o} \in \boldsymbol{d}}^{\boldsymbol{d}} \boldsymbol{g o j} \boldsymbol{i}_{\boldsymbol{o c c} \boldsymbol{t}} * \boldsymbol{w}_{\boldsymbol{o c c}, \boldsymbol{t}} \begin{array}{r}
\text { weight } \boldsymbol{w} \text { is based on the } \\
\begin{array}{r}
\text { relation between number of employees } \\
\text { within single occupation occ and total } \\
\text { number of employees working in the } \\
\text { specific KIdB } 2010 \text { classification level } d
\end{array}
\end{array}
$$

Aggregation at sectoral and regional level

$$
\begin{aligned}
g o j i_{d t} & =\sum_{o \in d}^{d} g o j i_{s e c} t * w_{s e c, t} \\
g o j i_{d t} & =\sum_{o \in d}^{d} g o j i_{r e g} * w_{r e g, t}
\end{aligned}
$$

weight \boldsymbol{w} is based on the relation between number of employees within single sector sec / region reg and total number of employees working in the specific WZ / NUTS classification level d

Further econometric examples
\rightarrow Dependent variable: wage growth
Spatial analysis / Aggregation of greenness indizes on NUTS-4 level
Aggregation from single-occupation-level to occupational (main) groups
Extending database for a long-term perspective of the greening of jobs Prepare and import additional data from 2006 and 2016

Data

TEXTMINING - Coding of requirements

Categories of 'green tasks'	'Green tasks'	Matches (requirements)	
code	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 4}$	
01 Sust. energy production \& storage	gt01 EPES	12	12
02 Energy efficiency (incl. building)	gt02 EEFF	15	15
03 Air Pollution management	gt03 APM	7	7
04 Mobility	gt04_M	19	22
05 (Raw) material efficiency	gt05_RME	2	2
06 Recycling / waste management	gt06_RWM	19	19
07 Water / waste water management	gt07 WWM	14	14
08 Sust. Farming, forestry, food, cons. goods	gt08 SFFFC	17	18
09 Environm./Climate protection (general)	gt09 ECP	30	31
Total		135	$\mathbf{1 4 0}$

Empirical example

Employment development - Econometric model (Fixed effects)

```
empocct
= \beta
```


Response variable emp $_{\text {occt }}$ employment growth rate of occupation occ in time t (here: 20122014)

Regressors
$\boldsymbol{g o j i}_{\boldsymbol{o c c} \boldsymbol{t}}$ greenness-of-jobs indicator core based on core requirements, light based on additional req., mix based on both core and add. req.
$\boldsymbol{p e r s}_{\text {oct } t}$: personal characteristics; $\boldsymbol{r e g i o}_{\text {occ } t}$: firm location (NUTS 1);
$\boldsymbol{f i r m}_{\text {oct } \boldsymbol{t}}$: firm characteristics; sector $_{\text {occ } t}$: sector dummies

Empirical example

Wage development - Econometric model (Fixed effects)

```
wage occt
= \beta
```


Response variable $\boldsymbol{w a g e}_{\text {occt }}$ wage of occupation occ in time t (here: 2012-2014)

Regressors
goji $\boldsymbol{o c c t}^{t}$ greenness-of-jobs indicator core based on core requirements,
light based on additional req.,
mix based on both core and add. req.
pers $_{\text {occ } t}$: personal characteristics; regio $_{\text {occ } t}$: firm location (NUTS 1);
firm $_{\text {occt } t}$: firm characteristics; sector $_{\text {occt } t}$: sector dummies

TEXTMINING

Next steps / Possible issues for discussion

Text crawling using R
Building a corpus including HTML-data from CD-ROM (2004)

- Parsing offline HTML-pages
- Different content representation / Need for a new analysis system
- Selection of the appropriate scope of text sources (requirements list only?)
Creating the keyword catalog in R
Generation of a new 'keyword catalog' by Text mining methods (ML?)
Calculation of the Greenness index
Tackling the bias problem due to different levels of tasks complexity
Applying a text mining approach to calculate the weights
Econometric Application
Running test regressions with different gi-schemes
(y : employment growth within occupational segments)

Side Note: Potential for regional labor market research Example from Vona et al. (2016)

Vona, F., G. Marin, D. Consoli, (2016), 'Measures, Drivers and Effects of Green Employment: Evidence from US Local Labor Markets, 2006-2014', Nota di Lavoro 48.2016, Milan, Italy: Fondazione Eni Enrico Mattei

Spatial issues covered:

- Spatial dynamics
\rightarrow Geographical concentration of green jobs (changes over time),
- Profiling fast-growing and top (green) areas
\rightarrow Top green areas are high-tech areas
- Green job local multiplier
\rightarrow one additional green job yields the creation of 4.2 new jobs in non-tradable activities

Literature review:
Employment impacts / social costs of environmental regulation

- (Moderate) positive impact

Vona et al. (2016)
Porterlvan der Linde (1995) \rightarrow env. regulation triggers env. innovation > comparative advantage

- No impact Berman/Bui (2001), Morgenstern (2002), Cole/Elliott (2007), Martin et al. (2014), Gerster (2015)
- (Moderate) negative impact

Greenstone (2002); Walker (2011); Abrell et al. (2011), Curtis (2014), Kahn and Mansur (2014)

- Social/Transitional costs

Walker (2013) , Bartik (2015)

Data: The BERUFENET expert database Occupations and job requirements/tasks

Occupation-Requirement matrices

Year	Number of occupations (8-digit-level)	Number of requirements
2011	3,894	6,561
2012	3,911	6,670
2013	3,937	6,709
2014	3,946	6,745
2015	3,938	6,819
2016	4,236	7,325

Descriptives:

Top-10 green occupational types by GOJI total,2-digit 2014

Occupational type (en)
Occupational type (de)
34Occup. in building services engineering Gebäude- und versorgungstechnische 13 and technical building services Berufe
52Drivers and operators of vehicles and Führer/innen von Fahrzeug- und 06 transport equipment Transportgeräten
11 Occup. in agriculture, forestry, and Land-, Tier- und Forstwirtschaftsberufe 05farming
12 Occup. in gardening and floristry Gartenbau- und Floristikberufe 04
33Occupations in interior construction (Innen-)Ausbauberufe 04
25 Technical occup. in machine-building Maschinenbau- und 03
and automotive industry Fahrzeugtechnikberufe
41 Occup. in mathematics, biology, Mathematik-, Biologie-, Chemie- und 02 chemistry and physics Physikberufe
32 Occup. in building construction above Hoch- und Tiefbauberufe 02 and below ground
53 Occup. in safety and health protection, Schutz-, Sicherheits- und 02 security and surveillance Überwachungsberufe
22Occup. in plastic-making and - Kunststoffherstellungs- und - 012 processing, and wood-working and - verarbeitungs-, Holzbe- und - processing verarbeitungsberufe

Descriptives: Greenness of occupations Top green occupations (8-digit) by GOJI ${ }_{\text {add }} 2014$

Occupational title (English)	Occupational title (German)	GOJI ${ }_{\text {add } 201}$
Head of office of experts for environmental issues	Leiter/in - Sachverständigenbüro für Umweltfragen	0.78
Environmental management officer	Umweltmanagementbeauftragte/r	0.78
Recycling specialist	Recycling-Fachkraft	0.67
Environmental expert	Umweltgutachter/in	0.67
Environmental auditor	Umwelt-Auditor/in	0.64
Waste advisors	Abfallberater/in	0.62
Technical assistant for environmental protection	Umweltschutztechnische/r Assistent/in	0.55
Specialist in environmental protection	Fachwirt/in - Umweltschutz	0.55
Specialist in recycling and waste management	Fachkraft - Kreislauf- und Abfallwirtschaft	0.54
Waste manager	Abfallbeauftragte/r	0.50

Data:

Greenness-of-jobs Indices on aggregated occupational level

where
$\boldsymbol{g o j} \boldsymbol{i}_{\boldsymbol{o c c} X d, t}$ Greenness-of-Jobs Index (0...1) on aggregated occupational digit-level occXd in year t.
$\boldsymbol{w}_{\text {occ5dtoXd,t }}$ Weight, based on the relation between number of employees within occupation
on 5-digit level ($\boldsymbol{e m} \boldsymbol{p}_{\boldsymbol{o c c} 5 \boldsymbol{d} \in \boldsymbol{d}, \boldsymbol{t}}$) and the total number of employees working in the higher occupational aggregate ($\boldsymbol{e m p}_{\text {occ } 5 \boldsymbol{d} \in X d, t}$) in year t.
$\boldsymbol{g o j i} \boldsymbol{i}_{\boldsymbol{o c c}} \mathbf{5 d , t}$ Greenness-of-Jobs Index (0...1) of single occupation on 5-digit-level in year t.
Indices
d digit-level of occupational classification KIdB2010
$\boldsymbol{o c c} 5 \boldsymbol{d}$ single occupation on 5-digit-level of KIdB2010 (basic level)
t
year t

Data: The Greenness Dictionary, List of keyword categories

	Category of	Category Code	Number of keywords
1	Keywords	Energy production \& storage	19
2	Mobility \& tourism	MOB	34
3	Building	BUILD	21
4	Farming, forestry, food, consumer goods	FFFC	19
5	Energy efficiency \& further climate protection	CP	10
6	Emission protection (air, water, soil, noise)	EP	27
7	Circular economy, (raw) material efficiency \&	CE	13
	waste management	EPGEN	10
8	Environmental protection (general)	GT	153
	Total number of green tasks keywords		

Link
Overview
Greenness
Dictionary

Data: The Greenness-of-Jobs Index (here: different weights for core and additional requirements)

$$
g i_{o t}=w_{r_{-} c o r e} \frac{\sum g r_{-} \operatorname{core}_{o, t}}{\sum r_{-} \operatorname{core}_{o, t}}+w_{r_{-} a d d} \frac{\sum g r_{-} a d d_{o, t}}{\sum r_{-} a d d_{o, t}}
$$

where
$\boldsymbol{g} \boldsymbol{i}_{\boldsymbol{o t}} \quad$ 'greenness index' (0...1) of occupation o in year t
$\boldsymbol{w}_{\boldsymbol{r}_{-} \text {core }} ; \boldsymbol{w}_{\boldsymbol{r}_{-} \text {add }}$ weights for the specific requirements types
(r_{-}core: core requirements, r_{-}add: additional requirements)
In the following example: $\boldsymbol{w}_{r_{-} \text {core }}: 2 / 3, \boldsymbol{w}_{\boldsymbol{r}_{-}}$add $: 1 / 3$
$\sum \boldsymbol{g r}_{-}$core $_{\boldsymbol{o}, \mathrm{t}}$ green core requirements of occupation o in year t
$\sum_{r_{-}} \boldsymbol{c o r e}_{\boldsymbol{o}, \boldsymbol{t}}$ all core requirements of occupation o in year t
$\sum \boldsymbol{g r} \boldsymbol{a}_{-} \boldsymbol{a d d _ { o , t }}$ green additional requirements of occupation o in year t
$\sum r_{-} \boldsymbol{a d d}_{\boldsymbol{o}, \boldsymbol{t}}$ all additional requirements of occupation o in year t
Indices
$\begin{array}{ll}\boldsymbol{o} & \text { single occupation o (8-digit-level of KIdB2010) } \\ \boldsymbol{t} & \text { year t }\end{array}$

Greening the economy will affect skills needs in three ways:

- new occupations and new skills qualification and training frameworks
- many existing occupations and industries will experience greening changes to tasks within their jobs
- increased demand for some occupations and decreases for others

European Centre for the Development of Vocational Training, 2012

[^0]: Source: BERUFENET 2014, own calculations.

