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Executive Summary 

The development of new energy technologies is widely viewed as an essential element in addressing 
climate change. However, identifying and prioritizing which energy technologies should receive research, 
development and demonstration (RD&D) funding is a key challenge for policymakers. Particular 
difficulties arise in estimating the future performance and costs of these technologies. To address these 
uncertainties, researchers have reached out to technology experts in order to develop probability 
distributions that can provide an indication  of future performance and costs of technologies, and allow 
for an assessment of how government RD&D spending might affect the future prospects for 
technological change.  

Expert elicitation is a structured process for eliciting subjective probability distributions from scientists, 
engineers and other analysts who are knowledgeable about an issue of interest (in this case, the costs 
and performance of clean energy technologies).  The data obtained from expert elicitations has been 
crucial in designing RD&D portfolios and developing better projections of future carbon emissions. This 
report provides a comprehensive and systematic overview and analysis of expert elicitation studies that 
have focused on climate mitigation technologies. The report also reviews the literature on modelling and 
decision-making that has utilized the data produced through expert elicitations.  

A number of key knowledge gaps were identified from this work. First, the expert elicitation studies 
reviewed all assume RD&D spending will remain constant or increase. Given this, there is a lack of 
understanding related to the impact on technological change if RD&D budgets and programmes are 
scaled back through tightening government budgets. Second, most expert elicitation studies have  
focused on developed countries. However, given the significant influence that geographical background 
plays on how experts estimate future costs, expert elicitations should be expanded to emerging 
economies, which play an increasingly active role in technology innovation. Third, expert elicitations 
have largely been undertaken for a limited range of technologies and have not included other key 
climate mitigation technologies, such as utility-scale energy storage, wind, vehicles, gas turbines, 
geothermal and energy efficiency technologies. 

The review of the expert elicitations also yielded some generalized conclusions related to RD&D 
expenditures. For instance, most experts believe that increased public RD&D investments will result in 
cost reductions for future technologies, albeit with diminishing marginal returns. That being said, the 
elicitations indicate that RD&D investments will often not reduce the uncertainty regarding future 
energy costs and that in some cases this uncertainty may increase with larger RD&D investments as the 
range of technologies expands. 

In reviewing the range of studies, no single technology consistently stood out from the others in terms of 
largest cost reductions from increased RD&D spending. Even though no systematic pattern is visible, 
solar photovoltaic (PV) seems to receive the highest expectations for significant cost reductions. Also, 
carbon capture storage (CCS) is expected to improve significantly, but opinions are not as consistent as 
with solar PV. 

The review also concluded that technologies with the greatest potential for technological change are not 
necessarily the best RD&D investments, since a large decrease in cost does not necessarily result in the 
largest societal benefits. The technological prospects as well as the role and interaction within the 
broader economy have to be considered. Given this, policymakers have to be careful not to simply focus 
on the technology that has the strongest cost reduction through RD&D investment.   

The overview shows the benefits but also some limitations of using expert elicitations for gaining greater 
clarity on potential future technology impacts and costs. Many of these limitations could be dealt with 
through increased research funding to address the knowledge gaps identified.  
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1. Introduction   

The objective of this report is to provide a summary and analysis of multiple expert elicitations on a set 
of energy technologies that are widely regarded to be very important for addressing climate change. The 
shared objective of all of the elicitation studies was to collect probabilistic information on future costs or 
performance of these technologies.  Many of the studies were expressly aimed at assessing how public 
policies (in particular government R&D spending) might affect the future prospects for technological 
change. Summarizing this information in a coherent way is a significant challenge.  Since the studies 
were carried out by different groups in different periods with different formats, a wealth of scattered 
and non-comparable data surfaced.  Here we report on the first effort to systematically collect, 
summarize, review and, where possible, compare energy technology elicitation data to draw lessons and 
insights from the range of studies available. For many of the studies, we present harmonized data to 
allow comparisons. When harmonization was not possible but the data was available, we reproduced 
the original data. 

Expert elicitation is a structured process for eliciting subjective probability distributions from scientists, 
engineers and other analysts who are knowledgeable about the metrics of interest – in this case, the 
costs and performance of energy technologies.  Expert elicitation data can provide important insights on 
future technology development for policymaking, energy portfolio design and the assessment of 
climate-change mitigation costs. Elicitations provide several advantages with respect to backward-
looking approaches, especially when intended to inform R&D decisions, which we discuss below in 
detail. It should be kept in mind, however, that the future evolution of technological cost is only one 
piece of the complex set of information needed to design cost-effective, robust public-energy R&D 
portfolios and other related policies. To this end, we also include a review of energy-economic and 
decision-focused models that have employed energy expert elicitation data to gain decision-relevant 
insights.   

In the remainder of this section, we introduce the reader to the basics of expert elicitations and provide 
some background on their applications and potential limitations. Section 2 reviews the expert elicitation 
surveys that have been carried out so far and presents aggregated distributions of elicited costs for a 
subset of studies and technologies. The original data by individual experts are reported for many of the 
studies in Appendix A. Section 3 discusses current energy RD&D investments, as well as the allocations 
suggested by experts from two sets of studies. Section 4 reports the results from a set of meta-analyses 
that provide insights on the relationship between elicitation results and characteristics of the studies, 
such as R&D investment levels, technology-specific characteristics, elicitation design and choice of 
experts. In Section 5, we review how expert elicitation data can be used to inform models, leading to a 
more comprehensive evaluation of the impact of R&D and technological change on broader societal 
outcomes. In Section 6, we conclude with a summary of key findings. 

1.1 Expert elicitations 
    
Investments in research, development and demonstration (RD&D) as a means to address key 
environmental, economic, security and access challenges associated with traditional fossil-based energy 
systems are widely discussed in the literature (see Acemoglu et al. 2012; Jaffe, Newell, and Stavins 2005; 
Holdren and Baldwin 2001; Anadón, Bunn, and Narayanamurti 2014). Making decisions about RD&D 
investments in energy technologies requires a careful balance of potential benefits and costs under 
uncertainty. Over the past eight years, various research groups have attempted to inform these decision 
by quantifying uncertainty surrounding future technology costs. To this end, they conducted a number 
of structured expert elicitations on the future costs of key energy technologies.  
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Expert elicitation, as we use the term herein, is a structured process for eliciting subjective probability 
distributions from experts about items of interest to decision-makers (see, for example, Hora and Von 
Winterfeldt 1997; for a broader definition, see Dewispelare, Herren, and Clemen 1995). Such expert 
elicitations were pioneered in the 1960s and 1970s, mainly in applications concerning decisions in the 
face of uncertain natural extreme events (Howard, Matheson, and North 1972; North, Offsend, and 
Smart 1975), and they were increasingly used to inform policymaking (Hora and Von Winterfeldt 1997; 
Peerenboom, Buehring, and Joseph 1989; InterAcademy Council 2010; EC 2015; US EPA 2015; Cooke et 
al. 2007; Krayer von Krauss, Casman, and Small 2004; Morgan 2014). In our context, expert elicitations 
provide a way to collect information from experienced professionals about the future of specific energy 
technologies. They can be used to generate a collection of experts’ best estimates of future technology 
costs, which can be conditional on different levels of public RD&D investment in a particular technology. 
Most importantly, they provide measures of the uncertainty associated with such estimates, since they 
can be used to collect information about lower and upper bounds of the cost distribution. A 
complementary approach to expert elicitation is the “backward-looking” econometric analysis of past 
trends, as in the learning or experience-curve literature (Wiesenthal et al. 2012; Nagy et al. 2013; 
Bettencourt, Trancik, and Kaur 2013).  

Expert elicitations of future energy technology costs provide several advantages with respect to 
backward- looking approaches, especially when intended to inform RD&D decisions. Given the different 
nature of technologies under investigation, and given the presence of discontinuities in the evolution of 
technologies over time, past trends may not correctly predict the future evolution of costs and 
performance. More concerning, past trends are unlikely to give much insight into the impact of different 
R&D funding amounts and allocations on the future of emerging energy technologies (Baker, Chon, and 
Keisler 2009a; NRC 2007). Hence, tapping the specific knowledge of experts may be the only way to infer 
what the evolution of costs and performance of emerging technologies might be in the future (using 
information from experts that may not yet be codified in the literature) and to get a sense of the major 
technological challenges, and other bottlenecks and challenges.   

The main challenge of expert elicitation is that it relies on individuals who are experts in the field under 
investigation but not necessarily proficient at expressing themselves in terms of probability (Winkler 
1967). This, in concomitance with a growing understanding of human biases and heuristics in dealing 
with uncertainty coming from the psychological literature (e.g., Tversky and Kahneman 1974), led to the 
development of protocols and methodologies for structured expert elicitations. Table 1, reprinted from 
Marquard and Robinson (2008) and originally adapted from Hammond, Keeney, and Raiffa (1999), lists a 
number of psychological traps that may impact expert elicitations and builds on the pioneering work of 
Tversky and Kahneman (1974). Morgan and Henrion (1990) provide a comprehensive overview of early 
applications as well as methods, drawbacks and necessary steps in the elicitations to reduce biases.  
Their work, and the vast literature that has been generated since, point to two critical issues. The first 
set of issues concerns the elicitation protocol itself and how to properly design it in order to reduce 
expert biases as much as possible (see Edwards, Miles  and von Winterfeldt 2007, Ch. 8 by Hora; 
O’Hagan et al. 2006). Expert elicitation protocols must be designed to encompass and control every step 
of the expert elicitation exercise, including a definition of the elicitation objectives, a well-designed 
questionnaire and survey format, and the correct implementation of the elicitation. The second set of 
concerns relates instead to the analysis and presentation of the data collected from expert elicitation 
exercises. Different aggregation methods, including not aggregating at all, present different merits and 
drawbacks.  

 



GGKP Working Paper 01|2016 

4 

 

Table 1: Challenges associated with expert elicitation 

 
Source: Reprinted from Marquard and Robinson, 2008. 

Related to biases and heuristics is the question of how to evaluate an elicitation (i.e., how to determine 
if the elicitation has high validity). This is a very difficult question because subjective probabilities reflect 
an individual’s degree of belief: unless a probably is 1 or 0, it is impossible to say that an individual 
probability is “right” or “wrong.” At least in theory, it is possible to evaluate how well-calibrated an 
expert is. An expert is well calibrated if about p% of the events to which he assigns p% probability 
actually occur. This can be extended to intervals as well: an expert is well calibrated if about 80% of the 
time the realized value falls inside the 10-90 percentile range, for example. Calibration is not the only 
evaluation criteria; we would also like experts to have precise resolution. For example, an expert who 
always gave the long-term average probability of rain would be perfectly calibrated, but poorly resolved, 
and therefore he/she would not be very useful. Calibration, however, is considered an important 
evaluation criterion. Overconfidence is one of the most common (and potentially severe) problems in 
expert judgment. Overconfidence is reflected in stating probability intervals that are poorly calibrated in 
terms of being too narrow: the realized value falls outside of the central intervals much more frequently 
than it should. It has been found that the true values do in fact fall outside the intervals much more 
frequently than expected. One landmark study (Capen 1976) found that, on average, about 68% of the 
true values fell outside the interval provided by experts, regardless of what interval the participants 
were asked for (30%, 90%, 99%).  Overconfidence by a group of experts can, in practice, be identified 
when multiple experts in a study have non-overlapping probability intervals. In the remainder of this 

Challenge Description 

Anchoring Disproportionately weighting initial information 

Status quo trap Bias toward alternatives that perpetuate the current 
situation 

Sunk-cost trap Weighing past decisions, or costs, in the current 
decision 

Confirming-evidence trap Searching for or interpreting information in a way that 
supports one’s preconceptions 

Framing trap Framing of a question or problem to influence the 
answer (e.g., as gains versus losses or with different 
reference points) 

Overconfidence trap Overconfidence in the accuracy of one’s predictions 

Recallability trap Overestimating the probability of memorable or 
dramatic events 

Base-rate trap Neglecting a base-rate in an assessment 

Prudence trap Compounding of error due to multiple “safe” judgments 

Outguessing randomness trap Viewing patterns in random phenomena 

Surprised-by-surprises trap Failure to recognize reality as sometimes surprising 
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Section, we will discuss these two issues in detail. We refer the reader to Morgan (2014) for an extensive 
review of potential issues with expert elicitations applied to public policymaking. 

1.2 Elicitation protocol   

Structured expert elicitations are aimed at collecting the best available knowledge on the future 
evolution of some process, device or event from knowledgeable experts. This knowledge is encoded in 
the form of subjective probability distributions. Elicitations can make use of either verbal or written 
communication in order to retrieve such knowledge, or in many cases, to help the experts develop the 
probability distributions that represent their knowledge (Morgan and Henrion 1990; Edwards, Miles, and 
von Winterfeldt 2007, Ch. 8 by Hora).  

Expert elicitations are typically codified in a protocol, which usually follows a set of steps (see, e.g., Kotra 
et al. 1996; Budnitz et al. 1997; Cooke and Goossens 2000; O’Hagan et al. 2006; Meyer and Booker 1991; 
Ahn and Apted 2010, Ch. 18 by Jenni and van Luik for an overview):   

- Define the objectives and choose an elicitation mode;  

- Identify the experts; 

- Structure the questions in the assessment;  

- Provide the experts with background and training to reduce biases; 

- Undertake pre-testing (which involves refining the survey with a subset of experts to fine-tune 
the questions and language and identify any other additional questions or issues to address); 

-  Perform an assessment (which may include follow-up interviews or activities);   

- Analyze the results and, if desired, aggregate;  

- Present the results.  

The first step of any elicitation is to define the objective. For many of the expert elicitations described in 
this report, the objective is to inform public energy technology R&D policy. The specific quantities of 
interest are metrics defining cost (e.g., levelized cost of electricity or cost of a technology component) 
and other technological performance parameters (such as efficiencies). A key premise for any elicitation 
is the availability and selection of experts who have the potential to provide useful information in the 
quantification of the uncertainty surrounding a specific event or process. In the case of energy 
technologies, these experts might be scientists and/or engineers in any sector working on the 
development of the technological components, private sector players who have both a scientific 
understanding of the technologies and a sense of other factors important to the evolution of future 
costs (e.g., the role of regulations and policies, or the evolution in the availability and costs of technology 
subcomponents), or actors from international organizations who are knowledgeable about both the 
technology and policy-related factors.  

A key step in the process is the choice of an elicitation mode. Elicitations can be carried out through in- 
person interviews, remote conference calls, written surveys or online surveys. It appears to be assumed 
in the expert elicitation literature that face-to-face (F2F) is the gold standard (Meyer and Booker 1991; 
O’Hagan et al. 2006). Morgan (2014) argues that during in-person interviews the researcher can more 
directly control how much time is devoted to “debiasing.”  The researcher could, for example, devote 
significant time to ask follow-up questions that prompt experts to consider a wider range of possible 
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outcomes, thereby reducing overconfidence. It is possible, however, that this interactivity can be 
achieved in other modes as well, in particular in phone calls and interactive online surveys. Many groups, 
in fact, have been moving towards other modes (Nordhaus 1994; Curtright, Morgan, and Keith 2008; 
Chan et al. 2011; Anadón et al. 2012), and there has been work in developing interactive online tools for 
supporting expert elicitation (James, Choy, and Mengersen 2010; Spaccasassi and Deleris 2011; Speirs-
Bridge et al. 2010; Shearer et al. 2014; Dalal et al. 2011). These are motivated by the expense – in terms 
of time and resources for both the assessment team and the experts – required for in-person 

elicitations.
1
 

There has, however, been very little research aimed at quantitatively evaluating the impact of elicitation 
modes and expert selection. One example is Baker, Bosetti, Jenni et al. (2014), which conducted a non-
controlled study comparing the same elicitation questions (on CCS energy penalty) performed F2F with 
experts from the United States and online with European experts. They found that the assessed level of 
uncertainty was similar for the most mature technologies, but that the F2F surveys revealed higher 
levels of uncertainty in the less mature technologies. This was likely a direct result of the time for back 
and forth confrontation that is available in F2F interviews. They also found that the online respondents 
assessed a larger number of technologies. This may reflect, on the one hand, the more flexible time 
commitment offered by the online mode (experts can decide to go back at different stages to the 
survey). On the other hand, this may also be related to the fact that experts devoted less time to each of 
the technologies, hence a result of the overconfidence for the less mature technologies. Anecdotal 
evidence coming from some of the Harvard studies suggests that online participants did not necessarily 
spend any less time filling out the survey than answering questions in a F2F or phone interview, but 
there are not enough data points to make any strong conclusions (Anadón, Bunn, and Narayanamurti 

2014).
2
 All in all, these studies found suggestive differences between the modes, but they were not able 

to draw strong conclusions. This is a promising direction for future research. Section 4 reviews three 
studies aimed at assessing how elicitation design, expert selection and other factors affect elicited 
estimates. 

Although typically the elicitation mode is encoded in the design of the elicitation itself, it is possible to 
later diversify the mode of the survey. For example, one could run the survey on a subset of the experts 
by means of in-person interviews, which typically implies that the interviewers and the interviewees are 
in the same room (or virtual room) for a period ranking between a few hours and a full day, while 
interviewing the remaining experts by means of a web survey. Note that even mail and online modes 
reviewed in this work have been used in conjunction with phone calls or in-person meetings with 
experts, as it is essential for the participating experts to have full access to researchers with a strong 
technical background who are able to clarify questions or survey motivations.   

The second step is to identify a set of experts to be included in the elicitation. Studies have pointed to 
the importance of the expert selection phase (see, for instance, Raiffa 1968; Keeney and Winterfeld 
1991; Meyer and Booker 1991; Phillips 1999; Clemen and Reilly 2001; Walls and Quigley 1991) and 
suggest that selecting a diverse pool of experts can help avoid the problem of anchoring to a particular 
reference point, often a conservative one informed by today’s technology (Meyer and Booker 1991). 

                                                           
1
 Note that there are costs for each of the modes: the costs from trips to interview experts in person have to 

be balanced with costs associated with designing a clear and interactive online elicitation. The advantage in 

terms of costs and time of online elicitations becomes more important if the same online elicitation tool or 

platform is used multiple times, without being completely redesigned. 

2
 The experience of the Harvard online and mail elicitations suggests that providing the option of interacting 

with researchers to participants proves to be a necessary part of elicitations done online or via email. 
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One study that used the same elicitation tool on different groups of experts was the joint Fondazione Eni 
Enrico Mattei (FEEM)/Harvard online nuclear survey, which determined that there was a difference 
between the cost estimates of US and EU experts (Anadón et al. 2012). As we review in Section 4, in a 
meta-analysis performed using multiple expert elicitations for nuclear power (Anadón, Nemet, and 
Verdolini 2013) and solar power  (Verdolini et al. 2015), the experts find that two expert characteristics 
stand out as the most influential in determining the assessed costs:  the experts’ geographic location and 
the sector in which they work (namely academia, private sector or government). The country where 
experts work and live might influence their subjective beliefs as different countries experience very 
different development of technologies over time. For instance, as argued in Verdolini et al. (2015), 
governments in Europe subsidized the adoption of solar power much more intensively than did 
governments in the US over the years 2007-2011. Hence, solar PV deployment was dramatically 
different in the two regions. While in 2000 cumulative solar TWh installed were comparable, by 2012 the 
EU had surpassed the US by more than an order of magnitude (BP 2013). Experts may have been 
influenced by the growth of the PV industry in their local markets, and thus the experience (which 
shapes the availability heuristic) of experts conducting their professional activities in each region would 
differ (Tversky and Kahneman 1974; Daniel Kahneman 2011). Similarly, institutional affiliation is likely to 
affect cost estimates, and elicited data might be subject to availability and anchoring heuristics 
associated with experts’ environment and experiences, leading to optimism bias where experts tend to 
have higher expectations for projects they are working on, or  motivational bias where experts may 
attempt to impact the ultimate decisions through their answers in the expert elicitation (Spetzler and 
Stael Von Holstein 1975; D. Kahneman and Lavallo 1993).  In some technologies, such as nuclear power, 
industry experts could, for example, be more pessimistic as they are more likely to think about potential 
escalations on labour, materials, licensing and permitting costs than their academic counterparts, since 
academic experts may tend to be more detached from these less technical costs in some technology 
areas that, for example, may experience increasing regulatory requirements (Anadón et al. 2012). 

There are often questions about the appropriate number of experts in an expert elicitation. In particular, 
ideas of statistical significance are not appropriate here. First, the views of informed experts are 
necessarily correlated to some extent, since there is a limited set of literature and results on any 
technology. Second, the idea of expert elicitation is to derive a representation of the views of the 
community of experts; it is not a draw from some kind of underlying existing probability distribution.  In 
one example, Clemen and Winkler (1999) found that the marginal value of an additional expert 
decreases substantially after three-to-four experts. A review of a large number of expert elicitation 
studies found that the typical elicitation has about 12 participants (US EPA 2015). However, one may 
expect that the appropriate number of experts would depend on the topic. In some areas, there may be 
more consensus than in others, which means that the marginal value of each additional expert may be 
greater. One difficulty in differentiating across areas is that it may be hard to know a priori how much 
disagreement there is across different experts. 

The third step is to structure the elicitation. This can be done by the researchers who are preparing and 
performing the elicitation; it is done typically in conjunction with a subset of experts. This includes the 
definition of the uncertain quantity to be assessed and the encoding of the expert judgments as 
probability distributions, as well as verification of the results through consistency checks and collection 
of any other relevant information. The definition of the uncertain quantity must be done carefully so 
that it is clearly and univocally defined. This is often called “the clarity test” (Howard 1988).  On this 
point, there must be a clear quantity that can be universally agreed upon once the event of interest has 
taken place.  For example, a quantity such as “the temperature in Germany in 2020” is not well defined. 
We need to establish where and when the temperatures will be taken and how they will be averaged. In 
the case of energy technology metrics, it is necessary to clearly define “when” and “where” (e.g., the 
2030 levelized cost of electricity generated by a rooftop solar PV installed in Germany) and “under what 
conditions.”  This is the ideal, however, it is often difficult to achieve in practice.    
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Deciding which conditions will be considered implicitly (thus leaving the experts to make judgements 
about them) and which will be considered explicitly is a crucial step in the protocol design process.  
Conditions of interest may include assumptions about future input prices, the characterization of 
government or private R&D efforts to support a specific technology and/or key energy or environmental 
policies (e.g., a carbon tax or a mandate on renewable energy technologies, among others) and/or 
assumptions about the future state of the economy (for instance, business-as-usual conditions for 
economic growth or current materials input prices). In many of the elicitations covered herein, the 
explicit government R&D policy is a condition of the elicited variable; many of the other conditions are 
not explicitly specified, and thus the expert must average over all the possible futures.  

There is a tension between fully specifying external conditions (such as economic growth and trade 
policies, among others) and the time and resources available for an elicitation. If an expert had unlimited 
time, patience and attention, then the ideal would be to include questions encompassing all relevant 
conditions. Given time limitations, however, a small number of conditions must be chosen.  One may 
expect that the smaller the number of factors or conditions specified, the larger the uncertainty range 
provided by an expert, since his/her uncertainty range would have to encompass a wider set of 
scenarios or possibilities. However, to the best of our knowledge no study has evaluated this in a 
systematic way.  

The fourth step in any elicitation is providing the experts with background material and, especially, with 
training and information on avoiding biases (Morgan and Henrion 1990). Elicitation protocols will often 
start with an introduction, which motivates the assessment and provides background information. 
During the elicitation itself, the elicitor will work with the expert to try to avoid cognitive biases as 
he/she approaches the elicitation task, a function that sometimes is also played by interactive tools in 
online elicitations.   

The fifth step is to tune the design of the survey, as well as the definition of the metric under 
investigation and of the hypothetical conditions by means of a pre-test phase. Indeed, choosing a subset 
of the elicitation experts and involving them at a very early stage to iteratively improve the clarity and 
coverage of the elicitation is an extremely important part of the process. The pre-test helps researchers: 
(1) calibrate the survey (e.g., length, clarity, etc.) with the view that the time that the experts devote to 
the elicitation is precious; (2) make sure that the questions asked cover key areas related to the topic 
investigated; and (3) provide comprehensive  background information. An example of the type of 
information that can be included in energy technology elicitations can be found in a link in the 
supplementary information of Anadón et al. (2012), page S3. In this specific case, experts were provided 
with data on previous cost estimates for different sub-technologies, a discussion about overconfidence 
and other biases, a description of how to reduce such biases, and data on previous R&D budgets.  When 
designing an elicitation, a key part of the pilot testing stage is to evaluate the time it takes to complete 
it.  In our experience one should aim for 2-4 hours, with 3 hours being an average time to completion. 
Longer elicitations run the risk of finding no experts able or willing to devote the time necessary to 
complete the task; they also involve the risk that experts will lose their concentration. Thus, the number 
of questions may be less relevant than the time taken, with some questions taking more time than 
others. 

In addition to conducting a pre-test phase in the design of the elicitation, it is highly recommended that 
a technology expert participates in each of the interviews or is available to those experts taking an 
online or paper elicitation. This helps address any concern or technical question from the participating 
experts. 

The sixth step is to perform the elicitation. This is done by the elicitation team, which will ideally include 
someone with experience in performing elicitations, someone with some background knowledge of the 
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technology, and someone with an understanding of the larger context in which the elicitation data will 
be used.  

Separate from how the survey is carried out, it is often useful to give back to the experts a summary of 
the survey results before any report or paper is published. In fact, while recruiting experts most groups 
promised that they would provide a summary of anonymous elicitation results well before a draft of the 
report was available. This provides the experts with an additional motivation to participate, as they are 
interested in learning about what other experts in the field see as the future of the technologies they 
work on.  In addition, several studies also conducted follow-up interviews that included clarifying 
questions and provided feedback to the experts.  Sending experts a summary of their own answers to 
review and double check ensures that researchers are able to capture their thoughts more fully. 

The data can be analyzed and reported in a number of ways, including presenting the data itself in raw  
form, in aggregated form, in harmonized form, and presenting the results of energy-economic and 
decision models that use the data. There is much current research on how to communicate uncertainty 
to the public and to decision-makers (Morgan 2014; Morgan 2015; Spieglhalter, Pearson, and Short 
2011). This research has great relevance to the presentation of expert elicitation results. In the next 
subsection, we discuss issues around the aggregation of data.  

1.3 Aggregation issues, limitations and qualifications   

Elicited metrics can be used to inform policy that represents a wide diversity of views (Morgan 2014; 
Morgan 2015), or it can be aggregated using various methodologies.  There is, however, little agreement 
on which method is best to aggregate, given the tradeoffs associated with various approaches. Clemen 
and Winkler (1999) compare a number of methods, including behavioural (where experts agree on an 
aggregated distribution) and mathematical. Mathematical methods include Bayesian methods (as well as 
simple averaging over probabilities), which are appealing theoretically but difficult to employ and 
problematic if experts are not well calibrated.3  Clemen and Winkler conclude that simple averaging is 
not only the simplest method, but seems to perform as well as the other methods. In particular, they 
highlight that: “simple combination rules (e.g., a simple average) tend to perform quite well” and that 
“more complex rules sometimes outperform the simple rules, but they can be somewhat sensitive, 
leading to poor performance in some instances.” Cooke and Goossens (2008) show that weighting 
experts based on their answers to some test questions can lead to considerable improvement with 
respect to the linear average. However, it is not clear which seed questions are appropriate for future 
predictions, such as those seen in energy technology elicitation studies.  

Some more recent work indicates that other mathematical aggregation methods may have some 
attractive properties. Hora et al. (2013) use the median in order to aggregate distributions and find that 
this leads to distributions that are better calibrated than mean aggregate distributions when the experts 
are well calibrated. However, since experts are most often overconfident, it is not clear that this method 
would be of great value in most cases. Lichtendahl, Grushka-Cockayne, and Winkler (2013) show that 
averaging quantiles rather than probabilities can be more accurate when experts are either 
overconfident or underconfident and suggest that this method be considered in place of, or along with, 
traditional linear averaging of probabilities.  

                                                           
3
 Specifically, the aggregated probability distribution will assign a probability of 0 to any event for which any 

expert assigned a probability of 0. Since in many studies expert distributions will fail to overlap, this method 

will break down. 
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Morgan (2014) suggests that expert distributions should not be aggregated at all, but simply presented 
to decision makers. This has the advantage of allowing decision makers to see, and possibly understand, 
the range of disagreement about key parameters. The downside of not combining the information in an 
aggregated distribution is that the decision makers are left with a lot of information that they may have 
difficulty using to support decisions. Similarly, if numbers need to be used in further analysis, the 
disaggregated form might lead to an impractical number of analyses.  

In this report, we provide both types of information. In Section 3, we present the aggregated estimate 
for each study, while in the Appendix we provide the estimates for each of the individual experts for the 
elicitations for which data are available. 

As a final comment, in this report we often compare multiple surveys done on the same technology, 
each eliciting the opinion of a number of experts. Most of these studies were developed independently, 
hence, they follow different protocols and often focus on eliciting metrics that are not directly 
comparable. Thus, comparability (and possibly aggregation) across studies becomes an issue. Data 
harmonization and meta-analysis are processes that have been used to shed some light on this issue. We 
discuss these in Section 4 below. 
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2. Literature review on expert elicitation of future energy technologies  

In this section, we summarize the characteristics of all the expert elicitation studies that (to the best of 
our knowledge) were performed on different low carbon and more efficient energy technologies since 
2007. Table 2 gives an overview of the studies by technologies, with four or more studies on CCS, solar 
and nuclear (although we present the Harvard and FEEM study together); six studies on biomass, evenly 
divided between electricity from biomass and liquid biofuels; three studies on batteries for electric 
vehicles, and a smattering of other studies in different technology areas.  Section 2.1 summarizes the 
variables that are covered by previous elicitations. Section 2.2 includes a detailed summary of 
elicitations by technology area. 

2.1 Key characteristics of energy technology expert elicitations    

We discuss the different dimensions that were considered in the design of these elicitations.  The studies 
vary with respect to a wide range of characteristics, the most relevant of which are highlighted in Tables 
2-4. To start with, 80% of the studies involve conditioned expert judgments on RD&D budgets, 73% of 
the studies are published in the peer-reviewed literature, while the others are published in publicly-
available reports, books or discussion papers. Understanding design and purpose differences is a key to 
appropriately interpret elicitation results and insights as well as to understand the data presented in 
Section 3, in which we compare cost data for those elicitations that could be harmonized.  

Table 2: Overview of expert elicitations on energy technologies 

Technology Research Group Experts Source/Publication 
Year of 
Elicitation 

Data and 
Info 

Bioelectricity 

UMass 4 (Baker, Chon, and Keisler 2008b) 2007 

Info: Table 
3 
H.D.:   
 
Figure 16 

Harvard 7 
 (Anadón, Bunn, et al. 2011; Anadón, 
Bunn, and Narayanamurti 2014) 

2010 

Info: Table 
3  
H.D.:   
 
Figure 16 

FEEM 16 (Fiorese et al. 2014) 2011 

Info: Table 
3 
H.D.:   
 
Figure 16 

Biofuel 

UMass 3 (Baker and Keisler 2011) 2008 

Info: Table 
3 
H.D.: 
Figure 17 

Harvard 8 
(Anadón, Bunn, et al. 2011; Anadón, 
Bunn, and Narayanamurti 2014) 

2010 

Info: Table 
3 
H.D.: 
Figure 17 

FEEM 15 (Fiorese et al. 2013) 2011 

Info: Table 
3 
H.D.: 
Figure 17 
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CCS 

UMass 3 (Baker, Chon, and Keisler 2009b) 2007 

Info: Table 
4 
H.D.: 
Figure 18 

Harvard 8 (Chan et al. 2011) 2010 

Info: Table 
4 
H.D.: 
Figure 18 

Duke 5 
(Chung, Patiño-Echeverri, and 
Johnson 2011) 

2011 
Info: Table 
4 
 O.D.: N/A 

UMass  (Jenni, Baker, and Nemet 2013)  

Info: Table 
4 
O.D.: 
Note: The 
lines range 
from the 
10th to 
the 90th 
percentiles 
and the 
marker in 
between 
represents 
the 50th 
percentile. 

FEEM 10 (Bosetti and Ricci 2015) 2012 

Info: Table 
4 
O.D.: 
Figure 25 

CMU 10 (Rao et al. 2006) 2006 
Info: Table 
4 
O.D.: N/A 

NRC 12 (NRC 2007) 2006 
Info: Table 
4 
O.D.: N/A 

UMass 4 (Baker, Chon, and Keisler 2008a) 2007 

Info: Table 
5 
H.D.: 
Figure 19 

Nuclear 

Harvard - FEEM 55 (Anadón et al. 2012) 2010 

Info: Table 
5 
H.D.: 
Figure 19,  
 
Figure 20 
and Figure 
21 

CMU 12 
(Abdulla, Azevedo, and Morgan 
2013) 

2011 

Info: Table 
5 
H.D.: 
Figure 19 

UMass 3 (Baker, Chon, and Keisler 2009a) 2007 
Info: Table 
6 
H.D.: 
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Figure 22 

Solar 

Harvard 9 
(Anadón, Bunn, et al. 2011; Anadón, 
Bunn, and Narayanamurti 2014)   

2010 

Info: Table 
6 
H.D.: 
Figure 22 

FEEM 13 (Bosetti et al. 2012) 2011 

Info: Table 
6 
H.D.: 
Figure 22 
and Figure 
23 

Near Zero 22 (Inman 2012) 2011 
Info: Table 
6 
O.D.: N/A 

CMU 18 (Curtright, Morgan, and Keith 2008) 2008 

Info: Table 
6 
H.D.: 
Figure 22 
and Figure 
23 

UMass 7 (Baker, Chon, and Keisler 2010) 2008 
Info: Table 
7 
O.D.: N/A 

Vehicles 

FEEM 14 (Catenacci et al. 2013) 2012 

Info: Table 
7 
O.D.:   
Figure 26 

Harvard 9 
(Anadón, Bunn, et al. 2011; Anadón, 
Bunn, and Narayanamurti 2014) 

2011 

Info: Table 
7  
O.D.: 
Figure 27 

Harvard  
(utility scale  
energy storage)  

25 
(Anadón, Bunn, et al. 2011; Anadón, 
Bunn, and Narayanamurti 2014) 

2011 

Info: Table 
7 
O.D.:  
Figure 28 

Other 
 

NRC 
(IGCC) 

8 (NRC 2007) 2006 
Info: Table 
7 
O.D.: N/A 

Stanford 
(natural gas) 

4 (Bistline 2013) YES  

Info: Table 
7 
O.D.: 
Figure 29 

GHG MI 
(wind) 

7 (Gillenwater 2013) 2010 
Info: Table 
8 
O.D.: N/A 

UCL 
(low carbon energy) 

25 (Usher and Strachan 2013) 2010 
Info: Table 
8 
O.D.: N/A 

Abbreviations: Info –additional information on the characteristics of the survey; H.D. –  harmonized data; O.D. 
– original data from the survey; N/A –  original data is not reported in the present report.     

Purpose of the studies. At least one of the goals of many of these studies was to provide evidence to 
support decisions about energy RD&D investments. In some cases, this was explicit, asking experts to 
judge cost evolution conditional on RD&D budgets; in others (20% of the studies), this was implicit as no 
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mention on the RD&D funding is made in the elicitation questions (for more information on study-
specific assumptions about R&D, see Appendix C to the present document). But even within this former 
group of studies there are significant differences.  For instance, the Carnegie Mellon University (CMU) 
solar PV study was designed to stand alone, rather than as part of a project aimed at using elicitations as 
a first step of conducting portfolio analysis using energy-economic models. Conversely, the FEEM, 
Harvard and University of Massachusetts (UMass) solar studies were developed specifically to support 
portfolio analysis, and this likely shaped the range of R&D levels proposed in the studies as well as the 
focus on understanding the detailed allocation of R&D resources by technology maturity and specific 
technology area assumed/proposed by the experts.   

Elicitation mode.  Elicitation mode refers to the way in which the expert judgments were collected, 
namely mail or online surveys or F2F interviews.  Within our sample, 42% involved F2F elicitations with 
all experts; a total of 72% included some F2F interactions (see section 2.2 for elicitation specific 
information about survey mode).  The gold standard for expert elicitations has been F2F interviews 
(Morgan 2014), but there has been very little research aimed at evaluating the efficacy and results of 
elicitation mode. We return to the issue of understanding the impact of elicitation mode, as well as 
other aspects of protocol design, in Section 4. 

Type of question. The intention of an expert elicitation of energy technologies (as we have defined it) is 
to assess subjective probabilities of future technological advancement. This can be done in two ways. 
One is to assess specific percentiles, most typically 5-50-95, 10-50-90 or  25-50-75. The other is to ask for 
probabilities of achieving a certain specified endpoint.  Among the studies summarized here, 46% used 
percentiles, 36% used probabilities and the remaining 18% used both. There are benefits to both 
methods. Percentiles are easy to translate to probability distributions and avoid anchoring the experts.  
They are, however, prone to overconfidence, with experts often reporting ranges that are too small 
compared to other experts’ ranges and compared to experimental findings. Probabilities are less prone 
to overconfidence (Juslin, Wennerholm, and Olsson 1999); they may, however, anchor experts and lead 
to a situation where only a small portion of the probability distribution is assessed. The gold standard 
would be to use both methods. However, the tradeoff is that with more methods for assessing values, 
fewer values can be assessed. For example, the FEEM solar study asked both, but the elicited metric was 
aggregated (levelized cost of energy, LCOE), while the Harvard solar survey elicited only percentiles but 
focused on a finer level of detail (for instance, inverter costs, lifetime, module costs, lifetime, etc.).  

Metrics. Metrics refer to the specific values that experts are asked to assess. The studies vary in the 
degree of aggregation in the metrics they assess, ranging from very specific technical metrics, such as 
“sorbent concentration” for carbon capture and storage (CCS), through aggregated characteristics of 
technologies, such as capital cost and efficiency, to highly aggregated cost metrics, such as LCOE. There 
are tradeoffs inherent in this decision. Disaggregated metrics require a great deal of time to assess and 
may be less intuitive for experts. On the other hand, aggregated cost metrics have one foot in 
technological understanding and one foot in economics, making them useful. However, it is often 
difficult to get a good assessment for these kinds of metrics. In particular, experts who deeply 
understand the technology and experts who understand economic pressures and interactions may often 
not be the same experts.  The most highly aggregated cost metrics allow for asking the largest number of 
questions and are interpretable by policymakers without a model.  They may, however, be most 
vulnerable to biases (e.g., unknown assumptions made by experts), harder to compare with other 
elicitations and  less useful for more detailed R&D project planning. Variation in this aspect is one of the 
major challenges to comparing and harmonizing results across elicitation studies.   

Target year.  This refers to the year for which the parameters are being estimated, with a range between 
2022 and 2050. A couple of studies (e.g., Harvard, CMU-Curtright) include two different time points.  
This is a second aspect that makes comparison across studies challenging. One possible solution to this 
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issue is to use some form of experience curve in order to forecast or backcast estimated values (Nagy et 
al. 2013).  This backcasting using experience curves also introduces assumptions, given that experience 
curves reflect not only the effect of RD&D investments, but also of other developments over time, such 
as technology deployment subsidies. 

Experts. The studies vary on the number of experts assessed, from as few as three in a solar study to as 
many as 31 in a nuclear study.  Some studies have found there are diminishing marginal returns to 
additional experts (Clemen and Winkler 1999; Clemen and Winkler 1985; Ferrell 1985; Clemen and 
Winkler 2007). One study (US EPA 2015) reviewed 38 expert elicitation studies and found that 90% used 
fewer than 12 experts, and 60% had six to eight experts.  The 26 studies we review herein appear to be a 
bit larger than average, with only 44% having fewer than 12 (about 11.5 experts on average).  Just over 
half of these studies had at least one participant from academia, government and the private sector. 
Academia was missing from three studies, industry was missing from five studies and government was 
missing from seven studies.  The different studies generally had specific reasons for selecting the set of 
experts, ranging from some of the UMass studies that were most interested in breakthrough 
technologies (and therefore focused on academia and government) through studies primarily interested 
in the current state of affairs (and thus focused exclusively on industry).  

Technologies covered. Some studies only assess a single specific technology category (e.g., small 
modular reactors). Other studies ask separate questions about different technologies within a 
technology area (e.g., large scale Gen III/III+, large-scale Gen IV, and small modular reactors). Other 
studies aggregate the technologies in some way, either by having experts assess only those specific 
technologies (e.g., enzymatic hydrolysis for biofuels) they believe will be most commercially viable, or by 
having the experts assess the future of an entire technology class (e.g., CCS).  

Assessment and self-assessment of experts. Some studies ask experts to assess their level of expertise 
in general or specific technology areas. This has significant appeal, since it allows researchers to 
determine whether experts are systematically favouring the recommended technologies in which they 
have the highest expertize (Anadón, Bunn, and Narayanamurti 2014). We are not aware of any methods 
that have been reliably used to adjust the reporting of elicitation results based on the expertise 
information. It has generally been found that there is no discernible relationship between an expert’s 
self-assessment and the assessments by that expert (Bolger and Rowe 2015). There is some evidence 
that there is value in asking test questions (questions whose exact answer can be actually tested by the 
researcher) and then weighting experts by how well they answer the test questions (Cooke 1991; Lin and 
Cheng 2009). However, the experimental evidence is based only on sets of test questions themselves 
and not results of actual expert elicitations. In other words, when using a set of related test questions it 
is clear that good performance on a subset of these questions is highly related to good performance on 
the other test questions. It is not clear, however, what constitutes a “good” test question for a real 
expert elicitation (for a discussion on this point, see Clement 2008). Only one of the studies considered 
here used a test question, but it was on an unrelated subject, aimed at generally assessing experts’ 
overconfidence.   

Presentation of R&D budgets constraints. As mentioned above, five of the 26 studies do not specify a 
public R&D budget (see Appendix C for detail on this). In these cases, it is an implicit part of the expert 
assessment to think about what future budgets may be. The 21 studies that do specify budgets take a 
range of approaches to defining the budgets on which the assessments are conditioned. Note that we 
use the term R&D even if many studies considered research, development and demonstration (RD&D) 
investments. The Harvard studies (see Anadón et al. 2011; Anadón, Bunn, and Narayanamurti 2014) first 
provide experts with information about the current budgets and ask them to evaluate future 
technologies under a Business as usual (BAU) scenario. They then ask each expert to specify a 
“recommended” budget aimed at increasing the commercial viability of the technology by 2030 and to 
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specify an allocation of the budget for that technology across a matrix of specific sub-technologies and 
technology maturity stage. Experts were then asked to make an assessment of the cost and performance 
of the technologies for three R&D scenarios additional to the BAU: ½ their recommended budget, their 
recommended budget, and 10X their recommended budget. Experts were asked to develop their 
recommended budget in a bottom-up fashion by physically or virtually allocating funding amounts to 
very specific research areas within a technology, and to cover the spectrum from basic R&D, to applied 
R&D and demonstration plants. The UMass studies developed budget amounts for each sub-technology 
(e.g., purely organic solar cells, and post-combustion CCS). These were also developed in a bottom-up 
manner in conjunction with a subset of experts. These budgets explicitly did not include demonstration 
plants and were primarily aimed at inducing scientific breakthroughs that would enable better 
technologies. Many of the studies defined budgets based on current governmental R&D budgets, 
including the FEEM studies whose budgets are based on multiples of current EU budgets, the Jenni, 
Baker, and Nemet (2013) study whose high budget is roughly five  times the current Department of 
Energy (DOE) budget, and the two National Research Council (NRC) studies, which define the budget 
based on the current DOE budget.   Finally, Rao et al. (2006) only specified “modest but steady growth” 
of the current DOE budget. Four of the studies (Jenni, Baker, and Nemet 2013; Ricci et al. 2014 and two 
NRC studies) explicitly considered a “no RD&D” scenario. Two studies (Curtright, Morgan, and Keith 
2008; Chung, Patiño-Echeverri, and Johnson 2011) used a BAU R&D scenario and a 10X BAU R&D 
scenario. The ranges of budgets considered vary widely, with the UMass studies generally having the 
smallest budgets and Harvard generally having the largest (see Section 3 for more details).  

In the remainder of this section, we summarize the key information concerning each of the studies 
available by means of tables. 

2.2 Description of the characteristics of existing expert elicitations by technology 

2.2.1 Bioenergy surveys 

Table 3: Summary of bioenergy expert elicitation characteristics    

Study (Baker and 
Keisler 2011) 

(Fiorese et al. 
2013)  

(Anadón, Bunn, et al. 
2011; Anadón, Bunn, 
and Narayanamurti 
2014) 

(Fiorese et al. 
2014) 

(Baker, Chon, 
and Keisler 
2008b) 

Group UMass biofuel FEEM biofuel Harvard biofuel and 
bioelectricity 

FEEM 
bioenergy 

UMass 
bioelectricity 

Elicitation 
mode 

F2F, mail, 
phone 

F2F Mail & phone F2F F2F, mail, 
phone 

Type of 
question 

Probabilities Percentiles 
and 
Probabilities 

Percentiles for the 
first three metrics; 
medians for the rest. 

Percentiles 
and 
probabilities 

Probabilities 

Metrics Capital cost 
per 
ggecapacity, 
efficiency, 
other 

cost per kWh Cost per gge;  cost 
per kWh, yield, plant 
life, feedstock costs 

Cost per gge,  Availability, 
efficiency, 
capital cost, 
yield & cost of 
feedstock 

Target year 2050 2030 2030 2030 2050 

Experts (#, 
characteristics) 

(6) Academia, 
government,  

(15) Academia, 
government, 
private sector 

(12) Academia,  
private sector 

 (16) 
Academia, 
government, 
private sector 

(4) Academia, 
government, 
private sector 

Technologies 
or 

Liquid fuels: 
thermal; 

Liquid fuels: 
pyrolysis, 

Liquid fuels and 
electricity: For liquid 

Electricity: bio- 
& thermo-

Electricity: 
steam & gas 
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technological 
paths 

enzymes; 
gasification  

hydrolysis; 
gasification 

fuels, specific 
technology (various 
biochemical or 
thermochemical 
processes included) 
specified by expert 
for three products 
(gasoline, diesel and 
jet fuel substitutes).  
For electricity, 
specific technology 
specified by expert 
based on assessment 
of commercial 
viability. 

chemical; 
steam and gas 

 
Feedstock 
improvement 

Self-
assessment 

No No Yes No No 

Budget See solar See solar Four public US RD&D 
scenarios: Business 
as usual (2009 
levels), and three 
scenarios based on 
expert-defined 
budgets: ½ of expert 
budget, expert 
budget, and 10X 
expert budget. 

See solar See solar 

Barriers or 
other issues 
identified 

Technological, 
deployment 

Land use 
competition 
with food 
 
Environmental 
externalities 

Technological, 
feedstock, 
deployment (policy), 
see Section 4 for 
more information 

Land and 
water use 
competition 
with food 
 
Environmental 
externalities 

 

Peer reviewed Y Y N Y N 
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2.2.2 CCS Surveys 

Table 4: Summary of CCS expert elicitation characteristics  
(United States dollars) 

Study  (Baker, Chon, 
and Keisler 
2009b)  

(Chan et al. 2011)  

 

(Jenni, 
Baker, and 
Nemet 
2013)  

(Ricci et al. 
2014)  

(Rao et 
al. 
2006) 

 

(NRC 
2007) 

(Chung
, 
Patiño-
Echeve
rri, and 
Johnso
n 2011) 

Group 
UMass Harvard UMass 

FEEM & 
UMass 

CMU NRC 
 

Elicitation 
mode 

F2F & survey F2F & survey F2F Online F2F F2F 
Panel 

Survey 
& F2F 
or 
phone 

Type of 
question 

Probabilities Percentiles, 
medians  

Percentiles Percentiles Percent
iles 

Probabil
ities 

Percent
iles 

Metrics Varied by 
technology; 
included 
energy 
penalty, 
capital cost 

Capital cost 
($/kW) efficiency 
(HHV), capacity 
factor, lifetime of 
gas and coal 
power plants with 
w/o CCS 

Energy 
penalty 

Energy 
penalty 

Capital cost 
($/kW) 

Sorben
t 
concen
tra-
tion, 
regene
ra-tion 
heat 
require
-ment, 
loss, 
and 
cost  

Percent 
increase 
in LCOE 

Energy 
penalty 

Target 
year 

2050 2030 2025 2025 2030; 
2050 

2022 2030 

Experts 
(#, 
characteri
stics) 

(4) Academia (13) Academia, 
government, 
private sector 

(11) 
Academia,g
overn-ment, 
private 
sector 

(12) 
Academia,g
overn-ment, 
private 
sector 

(12) 
Acade
mia, 
private 
sector  

(12) 
Academ
ia, 
private 
sector 

(11) 
Private 
sector, 
govern
-ment 

Technolog
ies 

Pre/post 
combustion;c
hemical 
looping 

Expert assessed 
most promising 
technology in 
their view  

Pre/post 
oxy-firing; 
chemical 
looping 

Pre/post 
oxy-firing; 
chemical 
looping 

Absorp
tion 

General Amine, 
chilled 
ammo
nia, 
oxy-
firing 
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Self-
assessme
nt 

No Yes No No No No Yes 

Budget See solar Four public US 
RD&D scenarios: 
business as usual 
(2009 levels), and 
three scenarios 
based on expert-
defined budgets: 
½ of expert 
budget, expert 
budget, and 10X 
expert budget. 

No 
additional 
or 
$250M/yr 

No 
additional 
or 
$250M/yr 

Steady 
growth 
throug
h 2015 

$218M/
yr, on 
average 

None 
specifi
ed  

Other 
issues 

 Technological,depl
oyment (policy), 
see Section 4 for 
details. 

With and 
without 
carbon tax 

    

Peer 
reviewed 

Y Y Y Y Y N Y 

 

2.2.3 Nuclear Surveys 

Table 5: Summary of nuclear expert elicitation characteristics   

Study (Baker, Chon, and 
Keisler 2008a)  

(Anadón et al. 2012)  (Abdulla, Azevedo, 
and Morgan 2013) 

Group UMass Harvard & FEEM CMU 

Elicitation Mode F2F & mail  Online & group 
workshop 

F2F 

Type of question Probabilities Percentiles for the 
first metric; medians 
for the rest. 

Probabilities & 
percentiles 

Metrics Varied by tech:, 
including safety, 
efficiency, capital 
cost, burn rate, 
water usage 

Overnight capital 
cost, fixed O&M 
cost, variable O&M 
cost, fuel cost, 
thermal burnup 

Capital cost; 
construction 
duration 

Target year 2050 2030 2012 

Experts (#, 
characteristics) 

(4) Academia, 
government;  

(61) Academia 
government; private 
sector;  

(16 from 4 orgs) 
Government; private 
sector 

Technologies or LWR; feeder Large scale (1GW) Small modular 



GGKP Working Paper 01|2016 

20 

 

technological paths reactors; fast 
reactors; small 
modular reactors 

Gen III+ systems, 
large scale (1 GW) IV 
systems, and small 
modular reactors 
(with capacities up 
to 300 MWe) 

reactors 

Self-assessment No Yes Yes 

Budget See solar Four public US 
RD&D scenarios: 
business as usual 
(2009 levels), and 
three scenarios 
based on expert-
defined budgets: ½ 
of expert budget, 
expert budget, and 
10X expert budget. 

None specified  

Barriers or other 
issues identified 

Technological, 
deployment 

Technological, 
deployment (policy), 
see Section 4 for 
more. 

Deployment 
scenarios 

Peer reviewed N Y Y 

Abbreviations: O&M–Operation and Maintenance; LWR–Light Water Reactor.
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2.2.4 Solar Surveys 

Table 6: Summary of solar expert elicitation characteristics 

Study (Baker, Chon, 
and Keisler 
2009a) 

 

(Anadón, Bunn, 
et al. 2011; 
Anadón, Bunn, 
and 
Narayanamurti 
2014) 

(Bosetti et al. 
2012) 

(Curtright, 
Morgan, and 
Keith 2008) 

 

(Inman 2012)  

Group UMass Harvard FEEM CMU  Near Zero 

Elicitation 
Mode 

F2F followed 
by survey 

Online F2F Mail survey Online 

Type of 
question 

Probabilities Percentiles for 
the first two 
metrics; 
medians for the 
rest. 

Percentiles, 
probabilities  

Probabilities Percentiles 

Metrics Capital cost 
per m

2
, 

efficiency; 
lifetime 

Module capital 
cost per Wp, 
module 
efficiency, 
inverter cost, 
inverter 
efficiency, 
inverter lifetime, 
O&M costs, 
other electronic 
components, 
etc. 

LCOE Module cost 
per Wp 

Module cost per W 

Target year 2050 2030 2030 2030; 2050 Year for deployment 
target defined by 
expert 

Experts (#, 
characteristics) 

(3) Academic (10) 
Government, 
private sector, 
academic 

(16) 
Government, 
private 
sector, 
academic 

(18) 
Government, 
private sector, 
academic 

(21) Government, 
private 
sector,academia 

Technologies 
or 
technological 
paths 

Purely 
organic; novel 
inorganic; 3

rd
 

generation 

Specific PV 
technology that 
each expert 
considers will be 
most 
commercially 
viable in 2030 

(27) 
Technologies  

(26) 
Technologies 
including 
multiple 
categories of 
crystalline-SI, 
thin film, 
concentrator, 
excitonic, and 
novel high 

General solar PV 
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efficiency  

Self-
assessment 

No Yes Yes Yes No 

Budget Conditioned 
on budgets 
defined by 
subset of 
experts 

Four  public US 
RD&D scenarios: 
business as 
usual (2009 
levels), and 
three scenarios 
based on 
expert-defined 
budgets: ½ of 
expert budget, 
expert budget, 
and 10X expert 
budget. 

1, 1.5, 2X 
baseline 
public RD&D 
level in EU 

BAU R&D 

10X BAU R&D 

With BAU 
deployment or 
10X BAU 
deployment 

How long it might 
take for the solar 
power industry to 
produce a total of 
300 GW and 600 GW 
of solar modules – 
roughly 10X & 20X 
more than up to the 
end of 
2010,respectively; 
experts were also 
asked what the 
average sales price 
of modules was 
likely to be at those 
milestones 

Barriers or 
other issues 
identified 

Technological, 
deployment 

Technological, 
deployment 
(policy), see 
Section 4 for 
more. 

Existing 
energy 
capital; 
unfavourable 
pricing rules 

Research vs 
market-driven 
strategies 

Needed 
breakthroughs in  
semiconductor and 
encapsulation 
materials or in 
installation 
methodology 

Peer 
Reviewed? 

Y N Y Y N 

Abbreviations:  W – Watt; Wp – Watt Peak ; F2F – face-to-face 

2.2.5 Others: batteries for EV; utility storage; alternative vehicles; IGCC; gas turbines 

Table 7: Summary of other (batteries for EV; utility storage; alternative vehicles; IGCC; gas 
turbines) expert elicitation characteristics 

Other Technologies 

 Batteries for 
EV 

Batteries 
for EV 

Utility-scale 
storage 

Alternative 
vehicles: 
HEV, PHEV, 
EV, and 
hydrogen, 
and 
advanced 
ICE 

IGCC Natural gas 
turbine 
efficiencies 

Study (Baker, Chon, 
and Keisler 
2010) 

(Catenacci 
et al. 2013)  

(Anadón, Bunn, et 
al. 2011; Anadón, 
Bunn, and 
Narayanamurti 

(Anadón, 
Bunn, et al. 
2011; 
Anadón, 

(NRC 
2007) 

(Bistline 
2013) 
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  2014) Bunn, and 
Narayanamu
rti 2014) 

 

Group UMass FEEM Harvard Harvard NRC Stanford 

Elicitation 
Mode 

F2F & mail F2F Mail and F2F for 
some 

Mail and F2F 
for some 

F2F Panel F2F 

Type of 
question 

Probabilities Percentiles, 
proba-
bilities 

Percentiles for 
the first three 
parameters and 
median for the 
rest 

Percentiles 
for the first 
parameter 
below, and 
median for 
the others. 

Proba-
bilities 

Values for 
various 
cumulative 
probabilitie
s 

Metrics Cost per kWh 
and others 

Cost per 
kWh 

Overnight capital 
cost ($/kW); fixed 
operating and 
maintenance 
costs ($/kW-
year); variable 
operating and 
maintenance 
costs ($/kWh); 
power/capacity/o
utput (MW); 
upper bound of 
total US potential 
(MWh); duration 
(hours); roundtrip 
efficiency (%); 
lifetime (years); 
and discount rate 
(%). 

Purchase 
cost of 
different 
very specific 
vehicle types 
($); gasoline 
usage 
(gal/100mi); 
electricity 
usage 
(kWh/100mi)
; all-electric 
range (mi); 
hydrogen 
usage 
(kg/100mi) 
*range and 
different 
types of 
usages apply 
to different 
vehicle types 

Capital 
cost; 
efficiency; 
availability 

First law 
efficiency 

Target year 2050 2030 2030 2030 2025 2025 

Experts (#, 
characteristi
cs) 

(7) Academia, 
government, 
private sector 

(14) 
Academia, 
govern-
ment, 
private 
sector 

 (25) Academia, 
government, 
private sector 

(9) 
Academia, 
government, 
private 
sector 

(8) 
Academia,
private 
sector 

(4), 
Govern-
ment, 
private 
sector 

Technologies 
or 
technological 
paths 

Li-ion; Li-
metal 

Li-ion; Li –
metal, -
sulphur, -
iron; Zn-air; 
other 
commer- 

Experts asked to 
specify and 
provide estimates 
for the most 
commercially 
viable technology 

General, 
experts 
might specify 
type 

General General 
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cial in 2030  

Self-
assessment 

No Yes Yes Yes No No 

Budget See solar See solar Four public US 
RD&D scenarios: 
business as usual 
(2009 levels), and 
three scenarios 
based on expert-
defined budgets: 
½ of expert 
budget, expert 
budget, and 10X 
expert budget. 

Four public 
US RD&D 
scenarios: 
business as 
usual (2009 
levels), and 
three 
scenarios 
based on 
expert-
defined 
budgets: ½ 
of expert 
budget, 
expert 
budget, and 
10X expert 
budget. 

DOE 
program; 
no DOE 
program 

Two public 
and private 
RD&D 
scenarios: 
business as 
usual, and 
enhanced 
RD&D 

Barriers or 
other issues 
identified 

Technological, 
deployment 

Behavioural 
changes; 
infra-
structure 

Technology, 
electricity market, 
and deployment 
policy barriers 
(see Section 4 for 
more). 

Technology,  
and 
deployment 
policy 
barriers (see 
Section 4 for 
more). 

Market 
success 

Not much 
RD&D 
funding to 
come from 
OEMs 

Peer 
reviewed 

Y Y N N N Y 

Abbreviations: HEV – Hybrid Electric Vehicle; PHEV – Plug-in Hybrid Electric Vehicle; EV – Electric Vehicle; ICE – 

Internal Combustion Engine; IGCC – Integrated Gasification Combined Cycle; OEMs – Original Equipment 

Manufacturers. 

2.2.6 Other surveys not focused on R&D 

Table 8: Summary of other technologies (not focused on R&D or primarily on technological 
change) expert elicitation characteristics 

Other technologies 

 Wind Low carbon 
electricity 

Study (Gillenwater 2013) (Usher and Strachan 
2013) 

Elicitation mode Phone F2F 
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Type of question Percentiles Percentiles 

Metrics Turbine cost; 
capacity factor; 
interest rate; 
electricity price; REC 
price 

LCOE 

Target year 2011 2030 

Experts (#, 
characteristics) 

(7) Private sector (25) Academia, 
government, private 
sector 

Technologies or 
technological paths 

1.5MW GE turbine 

 

Varied by expert, 
included wind, 
nuclear, CCS 

Self-assessment Years of experience 
in industry 

Test question; 
information on 
expert sources 

Budget None specified None specified 

Barriers or other 
issues identified 

Size of project; 
buyer of electricity 

 

Notes Study focused on 
prices and RECS, not 
technology (found 
strong agreement 
among experts on 
tech characteristics) 

Also looked at UK 
population, GDP; 
GHG prices; oil 
price; UK heating 
patterns 

Peer reviewed Y Y 

Abbreviations: RECS – Residential Energy Consumption Survey
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2.3 Summary of the harmonized expert elicitation data    

We present below a sample of the distributions of elicited costs from a subset of studies to provide an 
overview of the type of data collected in the expert elicitations. These distributions are aggregated over 
experts using equal weights. A subset of the original individual expert data is reported in Appendix A to 
the present document (not all data were available; some data were not compatible with individual 
expert reporting). As discussed in Section 2.2, elicited metrics were often not directly comparable 
between studies because survey designs differed in terms of elicited metrics, assumptions, proposed 
R&D budgets and time frames.  

Being able to consistently summarize and compare elicited values is important to assess differences 
between studies and get a more comprehensive picture about the possible future of energy 
technologies.  

Several researchers have made an attempt to overcome the lack of comparability among elicitation 
studies through a standardization process (Anadón, Nemet, and Verdolini 2013; Verdolini et al. 2015; 
Nemet, Anadón, and Verdolini 2015; Baker, Bosetti, Anadón, et al. 2015; Anadón et al. 2015). As we 
detail below, the standardization process was necessary because of differences across elicitations in 
terms of: (a) the year of the currency (some elicitations using US dollars in 2008 and others using US 
dollars in 2010, for instance); (b) the level of granularity in the questions (e.g., some elicitations asked 
questions about overnight capital costs and others about levelized cost of electricity); and (c) the year 
for which estimates were requested (e.g., 2030 vs. 2050).  The studies that conducted a standardization 
process describe the assumptions made to derive comparable estimates, such as discount rates, 
lifetimes and insolation rates, among others. Whenever possible we present data that were 
standardized. If a study was not included in the standardization summarized in Appendix C, we present 
the original data, when available, in Appendix A. Details on whether a study was included in the 
standardization procedure are reported in Table 2, and the reasons to exclude a study are discussed in 
detail below. All the standardized data presented in Appendix A are sourced from Nemet, Anadón, and 
Verdolini (2015), which builds on previous contributions. The two standardized variables of interest are 
the elicited metrics and the R&D levels for the different studies.  Below, we summarize briefly the 
rationale guiding the standardization procedure. For further details, we refer the reader to the original 
elicitation studies and to Appendix C.  

The choice of studies included in the standardization procedure and analyzed in Nemet, Anadón, and 
Verdolini (2015) was based on three reasons. First, only the studies that asked experts to provide 
probabilistic estimates in which experts were confronted with R&D budgets were included. Other types 
of forecasts, such as central estimates and ranges with no probabilities attached, were excluded (and are 
not shown in this report) because they 1) do not include a process of debiasing which is central to the 
expert elicitation methodology, and 2) cannot be used to explore the effect of R&D investments, 
protocol and expert characteristics on different points of the cost distribution (more on this is in Section 
4).  Second, inclusion in the standardization process often required transforming the elicited metric 
based on some clearly specified assumptions, as explained in detail in Appendix C. Hence, only the 
studies for which such assumptions could be made explicit and could be grounded in evidence were 
included in the standardization process. Finally, there had to be at least two studies on a given 
technology for them to be included.  The list of studies for which comparable elicited metrics were 
produced is presented in Table 1. 

The standardization process (discussed in Nemet, Anadón, and Verdolini 2015; Anadón et al. 2015; 
Baker, Bosetti, Anadón, et al. 2015 and Anadón, et al. 2015) required addressing differences in 
technology specificity across and within studies. For instance, some nuclear surveys focused on 
collecting information on the most commercially-viable, large-scale Gen. IV nuclear system and its future 
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cost, while others focused on specific reactor configurations, such as fast reactors and high temperature 
reactors. The standardization procedure identified the common denominator for technology specificity. 

The second issue addressed was that elicitations focused on different elicited metrics. For example, all 
FEEM surveys, except CCS and nuclear, collected information on the levelized cost of electricity, while 
Harvard collected data on different components, such as inverter efficiency and cost for solar 
photovoltaics. In the cases where the technological details of the surveys differed within each 
technology, it was necessary to construct a model to make the data comparable using common 
assumptions.  This allowed the conversion of elicited estimates into a cost metric of $/kWh in 2030. This 
common metric represented an LCOE for solar photovoltaics, a non-energy LCOE for bioelectricity, a 
non-energy levelized cost of fuel for biofuels, a partial levelized cost of electricity for nuclear (including 
only capital cost), and a levelized additional cost of CCS.  

Finally, all studies included in the standardization asked experts to provide technology estimates for 
2030, with the exception of the UMass studies, which asked experts about 2050. The UMass studies 
were interpolated from 2050 to 2030 using a process described in Baker, Bosetti, Anadón, et al. (2015). 

All available individual expert elicitation data (standardized and non-standardized) are presented in 
Appendix A.  Given that some experts provided cost estimates for different sub-technologies within each 
survey for each expert, we show only the lowest cost sub-technology estimate. 

Figure 1 shows an overview of the range of elicited non-energy levelized bioelectricity cost values from 
three studies.  Compared to 2014 estimates of costs from Bloomberg New Energy Finance (BNEF) (Chase 
2015), which have a median bioelectricity LCOE (including biomass costs) of about 0.12 $/kWh, we can 
see that UMass and Harvard experts foresee significant cost reductions in 2030, with significant overlap 
across those studies. FEEM experts seem more pessimistic, with 2030 non-energy levelized costs being 
in many cases greater than the 2014 full LCOE costs  
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Figure 1: Overview of non-energy levelized cost of bioelectricity by R&D scenario and survey in 
$2010/kWh 

 

from BNEF. 

Note:  The graph represents the minimum value of the 10th percentile values elicited from all the bioelectricity 
experts, the median of the 50th percentile values elicited from all of the bioelectricity experts, and the maximum 
of the 90th percentile values elicited from all of the bioelectricity experts in each of the three studies.  

Figure 2 shows an overview of the non-energy levelized production cost of biofuels in $/kWh from three 
studies.  It shows a comparable uncertainty range in the estimates from all of the studies, with the 
median 2030 estimates being around 0.04 $/kWh.  It is hard to compare the reported values with 
current biofuel estimates, since the latter often do not disentangle between energy and non-energy 
biofuel production costs. 
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Figure 2: Overview of non-energy levelized cost of biofuel production by R&D scenario and survey in 
$2010/kWh

 

Note:  The graph represents the minimum value of the 10th percentile values elicited from all the biofuel experts, 
the median of the 50th percentile values elicited from all of the biofuel experts, and the maximum of the 90th 
percentile values elicited from all of the biofuel experts in each of the three studies. 

Figure 3 shows an overview of additional levelized capital costs from coal plants with CCS plants over 
coal plants without CCS for two studies in $/kWh. Harvard estimates were generally more optimistic 
than UMass experts. This may be partly due to the process used to convert UMass 2050 estimates to 
2030, or it may be related to the specific technologies assessed in the different studies.  
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Figure 3: Overview of levelized additional capital cost for a coal plant with CCS over a coal plant without 

CCS per R&D scenario and survey in $2010/kWh. 

 

Note: In this case, we show the 10th,50th and the 90th percentile of the joint distribution of all the CCS experts 
(Baker, Bosetti, Anadón et al., 2015).  

Figure 4 shows the overview of levelized capital cost of nuclear power for four studies in $/kWh.  While 
the median across the studies is somewhat consistent, at about 0.07$/kWh, the upper and lower bounds 
are quite different.  Note that the very large uncertainty bound on the low R&D case for UMass is 
primarily an artifact of the conversion from probabilities to percentiles. (The two specified endpoints in 
the UMass study had very close probabilities in the low R&D case. The best fit to a smoothed cubic led to 
a very high upper bound). BNEF reports the 2014 LCOE (including operations and maintenance and fuel 
costs, among others, in addition to the overnight capital cost, included in the data reported in Figure 4) 
in the US and China around 0.12 $/kWh (Chase 2015).  While the data presented here is not directly 
comparable to widely reported numbers, capital cost is often the largest part of the LCOE for nuclear, 
indicating that some improvement over 2014 numbers is expected by 2030. 
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Figure 4: Overview of nuclear levelized capital cost of electricity by R&D scenario and survey in 

$2010/kWh 

 

Note: The graph represents the minimum value of the 10th percentile values elicited from all the nuclear experts, 
the median of the 50th percentile values elicited from all of the nuclear experts, and the maximum of the 90th 
percentile values elicited from all of the nuclear experts in each of the four studies. The x-axis is cut at 0.5 $/kWh, 
and the UMass upper bound goes out to 1.7 $/kWh.   
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Figure 5 shows an overview of the range of standardized solar LCOE values from four studies.  Compared 
to 2014 estimates of costs from Bloomberg New Energy Finance (Chase 2015), which have a median 
solar LCOE of about 0.14 $/kWh with a range of uncertainty between 0.09 and 0.32 $/kWh, we can see 
that the existing elicitation studies, which were conducted between 2007 and 2010, generally have a 
wider range of uncertainty and have higher estimates. This may reflect the rapid LCOE cost reductions 
that already took place between 2010 and 2014. However, it is important to note that the standardized 
values are based on a very low capacity factor assumption of 12%.  This is the value that was used in the 
FEEM study, and it may reflect capacity factors in the EU, but is lower than generally assumed in the US 
(between 18%-20%). Since LCOE is roughly linear in the capacity factor, the costs described below would 
be about 35% lower if an 18.5% capacity factor were used.  

Figure 5: Overview of solar levelized cost of electricity by R&D scenario and survey in 
$2010/kWh

 

Note: The graph represents the minimum value of the 10th percentile values elicited from all the solar experts, the 
median of the 50th percentile values elicited from all of the solar experts, and the maximum of the 90th percentile 
values elicited from all of the solar experts in each of the four studies. 
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3. Energy R&D budgets  

In this part of the report, we review data on R&D budgets allocation collected through the expert 
elicitations. Section 3.1 provides an overview of data on current and past R&D spending in each of the 
technologies considered. Similar data were included by most studies as background information to the 
experts. Note that even though many of the studies considered research, development and 
demonstration (RD&D) investments, we refer to R&D for simplicity. Section 3.2 reports, for those studies 
that collected them, information on total recommended R&D (in non-probabilistic terms), while Section 
3.3 provides information on experts’ recommendations about R&D allocation. Key insights from other 
qualitative and non-probabilistic information collected through some of the elicitations are summarized 
in Appendix B. All amounts are in United States dollars unless otherwise specified. 

3.1 Energy RD&D budgets, an overview   

Most of the expert elicitation studies that include background information about energy R&D budgets 
provide data on public sector investments, for three main reasons. First, these elicitations seek to inform 
public investments in energy R&D, and thus, information about current public investments can help 
experts calibrate what is being achieved with current funding and to project what the impact of any 
increases may be.  Second, information about private sector investments in energy R&D, both overall 
and for specific energy technology areas, is hard to come by (as we discuss later on in Section 3.1). Third, 
although this is less relevant for this review, our understanding of the impact of public or private energy 
R&D investments on each other is not very good. Therefore, many studies that ask experts to evaluate 
the future of technologies for particular government R&D investments request experts to assume that 
all other factors (e.g., economic growth and deployment policies) follow a business-as-usual scenario, 
and that any additional private R&D investments over this scenario they envision must be directly a 
result of the public R&D investment (for instance, through cost-shared agreements or new areas of 
research being opened). For instance, the FEEM, Harvard and UMass expert elicitation studies provide 
background information to the participating experts regarding the public funding for R&D for the 
technology area evaluated in one particular year and geography (from the U.S. Department of Energy for 
the Harvard and UMass studies, and from the International Energy Agency (IEA) Energy Technology 
RD&D budgets database for the FEEM study).  

This section provides an overview of data on public and private R&D budgets for energy technologies 
over time. It integrates and goes beyond (temporally and spatially) the information that the elicitation 
studies presented since it could serve to inform future efforts.  

Public energy RD&D in industrialized countries 

The International Energy Agency (IEA)  maintains the most comprehensive and inclusive database of 
public energy R&D investments over time for its 29 member countries: Australia, Austria, Belgium, 
Canada, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 
Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak 
Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom and the United States.4  

Figure 6 shows overall public energy R&D investments reported by the IEA member countries between 
1974 and 2013. Note that given delays in submissions, the most recent complete information available is 
for 2011, a year in which the combined energy R&D investments for those member countries added to 

                                                           
4
 Chile, Iceland and Mexico are OECD members, but are not IEA members. 



GGKP Working Paper 01|2016 

34 

 

14,500 million euros (2013€).  The governments also provide a breakdown into more granular categories 
(IEA 2015).5 

Broadly speaking, the IEA collects data on these large technology categories: Group I: energy efficiency; 
Group II: fossil fuels; Group III: renewable energy sources; Group IV: nuclear fission and fusion; Group V: 
Hydrogen and fuel cells; Group VI: other power and storage techs; and Group VII: total other cross-
cutting technologies or research. Within each of these categories, governments are asked to provide 
much more detailed information. For example, one of the categories in Group III is “solar energy,” which 
is itself divided into “solar heating and cooling,” “PV,” “solar thermal power and high-temperature 
applications,” and “unallocated solar energy.”   

R&D information at more granular levels (i.e., for more specific technologies within nuclear, solar and 
biofuels, among others) was provided in most of the elicitations that had questions about RD&D or 
RD&D scenarios.  This information was sourced in some cases from the IEA database described above 
(e.g., FEEM) and in some cases from more granular databases, such as the Harvard US DOE budget 
authority for energy research, development and demonstration database (DOE 2014), or direct 
extraction from budget documents, such as the DOE budget justification (note that the Harvard 
elicitations used a combination of the Harvard DOE database and the budget justification documents). 
Figure 7 below provides a time trend for investments in various programs from the Harvard database as 
an example. 

                                                           
5
 For details on the countries and technologies covered, see IEA (2015). 
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Figure 6: Public energy RD&D investments reported by IEA member countries between 1974 and 2013  

 

Note:  The last year with up to date information is 2011.  The 2012 and 2013 submissions do not contain 
information from all countries that report. 

 



GGKP Working Paper 01|2016 

36 

 

Figure 7: Example of a subset of data included in Harvard DOE database 

Source:  Gallagher and Anadón 2014.  
Note: The database includes more granular information than that shown here.   

 
Private energy R&D  

As previously mentioned, information on private energy R&D investments is rather poor. Thus, expert 
elicitations typically do not provide this information. The few available sources of data in this respect 
offer a partial picture of investments in the technologies covered in the elicitations. Better information is 
available for electricity generation technologies, especially renewables. Conversely, information on 
other technologies, such as vehicles and batteries, is very limited.  

The most recent version of the US National Science Foundation Industrial Surveys (see NSF 2015) – the 
Business Research and Development and Innovation Survey (BRDIS) – described in Anadón, Bunn, and 
Narayanamurti (2014), covers energy broadly. Before 2008, BRDIS had three broad technology classes 
(nuclear energy, fossil energy and all other) and only covered about 100 large firms. After 2008, it 
covered over 11,000 firms and provided a clear definition of “energy”, but it did not provide results 
disaggregated by technology area. Data are available since 2000, and the most recent available estimate 



The Future of Energy Technologies: An Overview of Expert Elicitations 

37 

 

(2010) from these sources indicates private energy R&D investments in the US at over $16 billion (in 
2010 US dollars) for a total of 11,557 firms.  

The EU Joint Research Centre (Wiesenthal et al. 2012) estimates private investments in technologies as 
part of its Strategic Energy Technology Plan, which covers several energy technologies: wind energy, 
photovoltaics (PV), concentrating solar power (CSP), CCS, biofuels, hydrogen and fuel cells, smart grids, 
nuclear fission and nuclear fusion. The authors use a bottom up approach that refines basic data on 
individual companies taken from the EU Industrial RD&D Investment Scoreboard, companies’ annual 
reports with other publicly available data, and direct contacts with individual enterprises. Information is 
presented by technology and country, but not by firm counts. Using this methodology, they estimate 
that corporate R&D in 2007 for non-nuclear technology areas was around €1.66 billion €2007, with a 
margin of error of 24%. Given the broader definition of energy R&D used in the NSF BRDIS survey, the 
EU and US numbers presented are not comparable. 

Energy R&D in emerging economies   

Public and private energy R&D data in middle- and low-income countries are hard to find – in these 
types of countries such data are not compiled systematically in any database, and it is typically harder to 
collect any type of information in these countries. A recent Harvard study demonstrated that their 
investments in energy technology R&D are important and deserve to be taken into account in an effort 
to think about the future evolution of technologies. Kempener, Anadón, and Condor (2010) show that, in 
2008, the BRIMCS countries (Brazil, Russia, India, Mexico, China and South Africa) invested at least $13.8 
billion 2008$ PPP.  This estimate includes funding from state-owned enterprises where the government 
has a majority stake. The data are only available for one year and are broken down by country and into 
categories compatible with the IEA technology categorization, namely: fossil (including CCS), nuclear, 
electricity, transmission, distribution and storage, renewable energy sources, energy efficiency, and 
other. The “at least” caveat mentioned above is important because there were many categories for 
which data were not available for a particular country, but this does not mean that there was no 
expenditure in the area. In the same year, governments in IEA member countries reported investing 
$12.7 billion 2008$ PPP.   

A report by the Frankfurt School, UNEP and Bloomberg New Energy Finance (BNEF and Frankfurt 
School/UNEP Centre 2014) has a global coverage but does not provide a breakdown by country for 
private RD&D. This report, which has been produced yearly since 2010, only covers renewable power 
and fuels (thus, it does not include, for example, vehicles, efficiency, nuclear or CCS). Other major 
limitations of this data source are that the number and size of the firms included in the estimates are not 
specified, and it is unclear how the renewables R&D budget for big corporations active in both energy 
and non-energy technology areas is determined and what the criteria are for including firms. 
Nonetheless, this source indicates a budget of $5 billion 2014$ in corporate RD&D in renewables in 
2013, which, according to their estimates, is roughly the same size as the amount of government R&D 
for clean energy.  

The source of the data for this report is the Bloomberg New Energy Finance (BNEF) database (BNEF 
2012) .  The BNEF database includes data from 2004 but is not freely available. It collects information on 
private R&D investments, as well as other types of investments, such as venture capital, private equity 
and asset finance in renewable energy technologies (for details, see, for instance, Rodríguez et al. 2015). 
As mentioned above, however, it is unclear what the actual coverage of this database is (e.g., how many 
companies are accounted for in each country and what types of companies are included), which makes it 
hard to use. With these caveats in mind, estimates of private renewable energy R&D investments from 
this data source  total  around $3.7 billion, as detailed in Table 9 and Table 10. 
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Table 9. Private RD&D investment by country class, all renewable technologies  
(Billions of United States dollars)  

Country 2004 2005 2006 2007 2008 2009 2010 2011 

Brazil 0.01 0.01 0.02 0.05 0.04 0.05 0.04 0.04 

China 0.02 0.02 0.03 0.09 0.20 0.32 0.46 0.32 

Europe 1.14 0.75 0.93 0.74 1.16 1.28 1.41 0.97 

India 0.00 0.00 0.01 0.01 0.03 0.06 0.06 0.04 

United States 2.30 0.75 0.87 0.76 1.01 0.93 1.06 1.03 

Other  1.67 0.97 099 1.04 1.46 1.31 1.53 1.28 

Total 5.15 2.51 2.87 2.70 3.91 4.01 4.57 3.68 

Note: Total may differ slightly due to rounding. 

Table 10: Private RD&D investment by technology class, all countries  
(Billions of United States dollars)  

Renewable 2004 2005 2006 2007 2008 2009 2010 2011 

Biofuels 0.51 0.20 0.19 0.21 0.32 0.40 0.52 0.40 

Biomass & waste 0.60 0.33 0.33 0.00 0.38 0.37 0.41 0.34 

Geothermal 0.03 0.05 0.07 0.04 0.08 0.07 0.08 0.07 

Marine 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 

Small hydro 0.03 0.07 0.09 0.08 0.11 0.14 0.12 0.11 

Solar 3.60 1.58 1.76 1.93 2.33 2.28 2.54 2.16 

Wind 0.39 0.28 0.45 0.45 0.69 0.76 0.89 0.64 

Total 5.16 2.51 2.89 2.71 3.93 4.03 4.57 3.73 

Note: Totals may differ slightly due to rounding. 
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3.2 Recommended government energy R&D budgets 

As described in Section 2, many studies asked experts to estimate future costs based on specified R&D 
investment levels. The Harvard study combined this approach for the BAU scenario by asking experts for 
their recommended annual investment levels in R&D between 2010 and 2030 to increase the 
commercial viability of the technology. When confronted with this question, on average experts in 
various technology areas recommended increasing public RD&D funding for that technology area by a 
factor of 2.5 to 11.  With the largest average increase of a factor of 11 being recommended for energy 
storage, and the lowest average increases of a factor of three to fossil energy, solar PV and bioenergy 
(see also Anadón, Bunn, and Narayanamurti 2014, table ES-1).  

Figure 8 includes the exact RD&D funding amounts recommended by the experts by technology area in 
the Harvard survey.  This is the only study that asked experts directly for recommendations about RD&D 
investments. 



GGKP Working Paper 01|2016 

40 

 

Figure 8: Recommended budgets from the Harvard studies per expert and technology 
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3.3 Data on the experts suggested allocation of government R&D  

The Harvard elicitations asked experts to allocate “chips” across various specific technology areas and 
types of research: basic research, applied research, experiments and pilots, and commercial 
demonstration.  For the mail and in-person surveys experts were asked to physically allocate 100 chips 
to different boxes in a large board composed of squares that represent a specific technology and type of 
research. Experts were then instructed to add up the chips in each box and write the number down – 
each box ends up with a number that corresponds to the percentage of the total budget that the expert 
would like to allocate to that specific technology and type of research.  For the online surveys, experts 
had a virtual representation of the board game, with 100 chips appearing at the bottom of the screen 
and disappearing as experts allocated them to the different boxes, with the program adding the chips in 
each box.  

The FEEM experts in all surveys but the CCS one were also endowed with 100 chips and asked to allocate 
them across the technologies focus of the study. Moreover, they were asked to comment on whether 
the RD&D investment should target basic research, applied research, or demonstration and deployment. 

The rest of this subsection contains a summary of the results from the budget allocations for each of the 
Harvard and FEEM surveys. All heat maps included below represent average percentage allocations 
across experts and come from those sources. The reader interested in the detailed data should consult 
Anadón, Bunn, et al. (2011)  and the Appendix in that document, along with  Bosetti and Catenacci 
(2014) from which this section draws heavily.   

Note that the experts recommended allocation of funds across technologies and across basic research, 
applied research, experiments and pilots, and demonstration cannot be directly compared with current 
programs in the US or the EU because the technology-detailed budget documentations do not use the  
detailed breakdown, even though the national R&D statistics reporting on all federal R&D investments 
use a similar construct comprised of basic research, applied research and development (see NSB, 
National Science Board 2014), with the latter category being arguably a good proxy for the combination 
of experiments and pilots and demonstration. Keeping this in mind, it is worth noting that the fraction of 
the 2011 federal R&D budget in the US for all technologies devoted to the basic research, applied 
research and development in was 32%, 24% and 44% respectively.  

3.3.1 Bioenergy and biofuels government RD&D experts suggested allocation 

Table 11, below, indicates that, on average, experts participating in the Harvard bioenergy survey – 
which covered both bioelectricity and biofuels – allocated the largest percentages of their budget to 
basic research in gasification and commercial demonstration of gasification, hydrolysis and other 
technologies.  Experts were asked to specify what additional research they thought should be conducted 
and to include it in the “other”’ category. Experts highlighted enhancing biochemical technologies, 
developing transportation technologies that can use liquid fuels that are not perfect substitutes for 
conventional fuels, fossil fuel refining and conversion technologies, and feedstock genetics, harvest and 
transport. On average, experts recommended 47% of the budget to be devoted to conversion 
technologies, 47% to refining technologies, and 7% to other (e.g., feedstock development). 

Table 12 presents similar information for the FEEM experts, who recommend devoting the majority of 
the R&D budget to conversion processes, both in terms of applied research and development, and about 
a quarter of the budgeted to both electricity generation and feedstock. Most of the investments 
suggested are in the later stages of the R&D process in these two groups.  Regarding biofuels, FEEM 
experts suggested that roughly 75% of the budget should be almost equally split among conversion 
technologies and feedstock, with refining processes attracting the remaining part (Table 13). 
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Table 11: Average allocation of recommended annual U.S. federal bioenergy RD&D budget from  
2010-2030  (Percentage of total budget) 
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Source: Anadón, Bunn, et al. 2011 
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Table 12. Average allocation of recommended annual EU bioelectricity RD&D budget from 2010-

2030 (Percentage of total budget) 
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Source: Fiorese et al. 2014. 

Table 13: Average allocation of recommended annual EU biofuels RD&D budget from 2010-2030 
(Percentage of total budget) 

Source: Fiorese et al. 2013. 
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3.3.2 CCS Government RD&D experts suggested allocation 

Table 14, below, summarizes the average recommended allocation of US federal RD&D investments in 
fossil energy.  Commercial demonstration of CCS retrofits, integrated gasification combined cycle, oxy-
combustion and chemical absorption are the areas that, on average, received the largest 
recommendation.   

Table 14: Average allocation of recommended annual U.S. federal fossil energy (includes CCS 
technologies) 
(Percentage of total budget)  
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Source: Anadón, Bunn, et al. 2011. 
Note: RD&D budget from 2010-2030 (percent of total budget).  
 

3.3.3 Nuclear power government RD&D experts suggested allocation 

Table 15 shows the average recommended allocation for Harvard nuclear fission experts. Various 
combinations of technology and types of research stood out, with experiments for sodium-cooled fast 
reactors and for very high temperature reactors, as well as applied research and pilots in fuel cycle 
issues receiving the largest share of funding on average.  

Since FEEM and Harvard collaborated in the nuclear survey, results are also available for nuclear 

European experts (see  

Table 16) using the same technology and research categorizations. Comparison of Tables 15 and 16 
shows that there is (in general) an agreement with respect to funding need between EU and US nuclear 
experts.  

Table 15: Average allocation of recommended annual US federal nuclear fission RD&D budget 
from 2010-2030 (Percentage of total budget) 
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Source: Anadón, Bunn, et al. 2011.  

Table 16: Average allocation of recommended annual EU nuclear fission RD&D budget from 2010-
2030 (Percentage of total budget)  
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Source: Bosetti and Catenacci 2014.   

3.3.4 Solar PV and CSP government RD&D experts suggested allocation   

 

Table 17 shows that, on average, Harvard PV experts recommended devoting the largest percentages of 
the federal solar PV R&D program to basic research on novel efficiency concepts, basic, applied, and 
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0.9% 4.5% 1.0% 0.3% 0.7% 4.1% 3.3% 4.3% 2.8% 2.2% 0.8% 1.7% 1.2% 1.3%

Commercial 

Demonstration
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Cross-cutting areasSpecific reactor systems
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pilots on thin film, applied research on crystalline sillicon, and applied research and pilots on 
concentrator technologies. Inverters and systems engineering were also considered important. 
Interestingly, for Harvard experts there is a high positive correlation (around 0.9) between the fraction 
of the budget devoted to demonstration and overnight module cost under the high R&D scenarios, and 
(not surprisingly) a high negative correlation (around -0.85) between the fraction of the budget devoted 
to basic plus applied research and cost.  This indicates that those experts that think that demonstration 
needs greater emphasis are also those that are more pessimistic about future costs, perhaps because 
they do not think that there will be more radical breakthroughs. 

Table 18 shows comparable information for the FEEM surveys. Interestingly, R&D investments for CSP in 
the FEEM survey were allocated at around a quarter of the total budget, especially for applied research 
and demonstration. Investments in thin-film PV and crystallinesi were targeting mostly applied research. 
Conversely, organic and third generation PV are considered less mature and still in need of significant 
investments in basic research.  

Table 17: Average allocation of recommended annual US federal solar PV RD&D budget from 2010-
2030 (Percentage of total budget) 

C
ry

s
ta

lli
n
e
 S

i

T
h
in

 f
ilm

C
o
n
c
e
n
tr

a
to

r

E
x
c
ito

n
ic

N
o
v
e
l h

ig
h
-e

ff
ic

ie
n
c
y

In
v
e
rt

e
r

S
y
s
te

m
s
 e

n
g
in

e
e
ri
n
g

O
th

e
r

Basic Research 2.4% 5.1% 3.6% 3.2% 6.6% 2.8% 1.4% 2.2%

Applied Research 5.5% 6.1% 5.4% 2.2% 5.6% 4.8% 4.4% 3.0%

Experiments and 

Pilots
2.5% 4.3% 5.1% 1.3% 2.5% 3.4% 3.5% 2.2%

Commercial 

Demonstration
0.5% 1.4% 3.5% 0.6% 1.1% 1.3% 1.5% 1.5%

Total

10.9% 16.9% 17.6% 7.3% 15.8% 12.3% 10.8% 8.9%

  

Source: Anadón, Bunn, et al. 2011. 
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Table 18: Average allocation of recommended annual EU solar technologies RD&D budget from 2010-
2030 (Percentage of total budget) 
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Source: Bosetti et al. 2012.   

3.3.5 Light duty vehicles government RD&D experts suggested allocation 

In the Harvard vehicles survey, experts emphasized the need to devote significant amounts of RD&D 
funds to basic research in novel energy storage concepts for light duty vehicles (Table 19).  Basic and 
applied research in Li-ion batteries, applied research in materials and in electronic controls were also 
emphasized. The other category, which was also significant, included extending electric ranges and 
developing HEVs capable of running on ethanol, gasoline or methanol, for example.  

In the FEEM surveys, experts recommended that about one fourth of the R&D budget be spent on Li-ion 
batteries, and especially on applied research and demonstration. Among the other technologies,   
lithium-air (Li-air) stands out as the one with the lowest perceived level of development, which would 
require a significant amount of basic R&D investments (Table 20).  



GGKP Working Paper 01|2016 

48 

 

 

Source: Anadón, Bunn, et al. 2011. 

Table 20: Average allocation of recommended annual EU EDV storage energy RD&D budget from 
2010-2030  
(Percentage of total budget) 
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Source: Catenacci et al. 2013. 

Table 19: Average allocation of recommended annual US federal vehicle energy RD&D budget  
from 2010-2030 (Percentage of total budget) 
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3.3.6 Utility scale energy storage government RD&D experts suggested allocation 

Table 21 shows that, on average, experts participating in the Harvard utility-scale energy storage 
elicitation recommended the largest percentages of funding to go to compressed air energy storage 
(CAES), batteries, and flow batteries, with a particular emphasis on commercial demonstration for CAES, 
and pilots and demonstration for flow batteries. 

Table 21: Average allocation of recommended annual US federal utility scale storage RD&D budget 
from 2010-2030 (Percentage of total budget) 
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Source:  Anadón, Bunn, et al. 2011. 

 

4. Meta-analyses of energy technologies expert elicitations  

In this Section, we summarize the approach and results from three meta-analyses that make a more 
articulated comparison between expert elicitation surveys (Anadón, Nemet, and Verdolini 2013; 
Verdolini et al. 2015; Nemet, Anadón, and Verdolini 2015). Each of these three papers starts by 
normalizing data from various expert elicitation surveys and then uses econometrics to analyze the 
relationship between elicited future costs (including uncertainty ranges)  and four key categories of 
variables: (1) technology characteristics, (2) R&D levels, (3) expert characteristics (sectoral background 
and geographic area), and (4) study characteristics (elicitation mode, year of elicitation, whether 
elicitation was published in a peer-reviewed journal). As summarized in the review of the literature on 
expert elicitation design (Section 2), such differences may indeed have expected and unexpected 
implications on the elicited values. Quantifying the impact of these variables on elicited costs is 
important as it can inform future expert elicitation studies in addition to improving our understanding of 
the relationship between R&D and future energy technology costs. 
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In the what follows, we briefly discuss the purpose of meta-analysis in this context. In Section 4.2 we 
provide a brief overview of the three papers.  In Section 4.3 we describe the dependent variables that 
are the objective of the comparison, the explanatory variables investigated, and the process employed 
by the three studies to make the elicited values comparable. In Section 4.4 we summarize their insights 
in terms of median costs, the possibility of breakthroughs and the range of uncertainty. When 
appropriate, we indicate if specific results are only applicable to one technology area or hold across the 
five energy technologies covered by the meta-analysis papers (for details on the standardization process, 
see Anadón, Nemet, and Verdolini 2013; Verdolini et al. 2015; Nemet, Anadón, and Verdolini 2015; 
Baker, Bosetti, Anadón, et al. 2015; Anadón et al. 2015 and Appendix C of this document) Section 4.5 
concludes with key findings. 

4.1 Purpose of and motivation for meta-analyses  

Despite the increasing use of expert elicitations in science policy contexts, analysts and policymakers 
have few tools with which to compare the results emerging from different studies. A key question in this 
respect is whether  differences in results between different expert elicitations are driven by protocol 
design, expert characteristics, or the set of available information at different times and locations. For 
instance, the expert elicitations listed in Table 2 vary considerably in terms of protocol design (i.e., in 
metrics collected, year for which the estimate is made, methods for administering the surveys), of the 
background and geographic area of the experts consulted (Section 2), and of the sub-technology 
considered. Moreover, different studies confront experts with different assumptions about R&D 
scenarios (Section 3). Hence, a simple juxtaposition of elicited cost estimates may convey misleading 
insights, since it does not take into account that study-specific characteristics that might be affecting 
cost estimates. Even a visual inspection breaking down standardized values into binary categories based 
on the geographic area of the experts may, for example, hide significant or insignificant effects.   

Anadón, Nemet, and Verdolini (2013), Verdolini et al. (2015) and Nemet, Anadón, and Verdolini (2015) 
use a meta-analytic approach to shed light on whether elicited values are consistently affected by both 
observed and unobserved characteristics. In the absence of randomized trials testing separately the 
impact of (for example) an elicitation mode – keeping everything else constant – the meta-analysis 
approach used by this set of papers gets us closer to isolating the impact of various factors. Using 
available data, the authors conduct a statistical analysis that shows whether expert or survey observable 
characteristics, and assumptions about technology granularity and R&D levels, impact elicited values in a 
statistically significant way while holding all other characteristics fixed. 

4.2 Description of energy elicitation meta-analysis studies 

We briefly describe the three meta-analysis papers below. The first looks at various nuclear surveys, the 
second at various solar surveys and the last one pulls together multiple surveys on multiple 
technologies.  

Anadón, Nemet, and Verdolini (2013) focus on future overnight capital costs of the FEEM, Harvard and 
CMU nuclear expert elicitations.  The FEEM and Harvard studies are virtually the same (with the 
exception of the contents of the background information) in elicitation design and method (both were 
conducted online). They both include a heterogeneous group of experts in terms of affiliation (industry, 
academia, public) and nationalities (EU and US), and focus on three classes of nuclear technologies 
(large-scale Gen III/III+ systems, large-scale Gen. IV systems, or small modular reactors including both 
Gen. III/II+ and Gen. IV designs). Each expert in the survey is confronted with various RD&D scenarios 
(see Appendix C). Conversely, the CMU elicitation was administered in-person, but only includes data for 
large scale Gen. III/III+ systems consistent with a business-as-usual US public RD&D funding scenario. 
The variation in expert and technologies within and across studies allows exploring the extent to which 
expert background and geography affect experts’ beliefs about the future of nuclear power and about 
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the expected returns to public RD&D measured by decreases in overnight capital cost. Some very 
preliminary results on whether or not in-person elicitations are associated with statistically significant 
differences in costs are explored. 

Verdolini et al. (2015) harmonize all solar expert elicitations presented in this report (i.e., FEEM, Harvard, 
UMass, Near Zero and CMU) to the common metric of levelized cost of electricity (LCOE). The choice of 
LCOE was dictated by the fact that most surveys collected cost estimates on technology components 
(e.g., at least module costs), while the FEEM survey asked experts to provide LCOE estimates given 
specific assumptions about insolation rates and discount rates. Using these FEEM assumptions for 
consistency, Verdolini et al. (2015) generated LCOE estimates from the other surveys. The variation in 
expert, technology and survey characteristics across solar elicitation studies was significant, and higher 
than in the case of nuclear (the Harvard and Near Zero surveys were conducted online, while the other 
three surveys were conducted in- person). As shown in Table 2, the CMU, FEEM, Harvard and UMass 
surveys asked experts to provide estimates for specific R&D levels and Near Zero asked experts about 
the costs under different levels of solar panel deployment. All elicitations but UMass elicited cost 
percentiles (P10, P50, and P90) for these different scenarios, while UMass asked about the probability of 
various technical and cost parameters being achieved. 

Finally, Nemet, Anadón, and Verdolini (2015) harmonize all solar, nuclear, biofuels, bioelectricity and 
coal with CCS elicitation data presented in Table 2 through Table 6 (except for the Chung et al. study) 
into a common unit of $/MWh. As explained in Section 2.3, in the case of solar and bioelectricity, this 
$/MWh metric represents the levelized cost of electricity. In the case of biofuels, the metric represents 
the levelized cost of fuel production.  In the cases of nuclear and CCS, the authors calculate a partial 
levelized cost (for nuclear the levelized capital cost, and for CCS the levelized additional capital cost over 
a coal facility without CCS). For bioelectricity and biofuels, the metric stands for levelized non-energy 
cost of electricity and levelized non-energy production cost, respectively. Nemet, Anadón, and Verdolini 
(2015) explore the effect of expert and study characteristics on a measure of uncertainty around the 
elicited costs and on the costs under a breakthrough technology development outcome (measured by 
P10).   

4.3 Dependent and independent variables in the meta-analysis studies 

4.3.1. Dependent variables 

By comparing standardized metrics, it is possible to exploit variation between and within elicitation 
studies to explore the role of observed and unobserved characteristics on elicited cost estimates.  
Anadón, Nemet, and Verdolini (2013), Verdolini et al. (2015) and Nemet, Anadón, and Verdolini (2015) 
investigate two sets of metrics of interest. The first includes three key percentiles:  the 50th percentile 
or central estimate (P50) provided by experts, which represents the median expected future costs;   the 
10th percentile cost estimate (P10), which can be interpreted as the value of elicited costs associated 
with something close to a “best-case scenario”, or breakthrough technology development (Nemet, 
Anadón, and Verdolini 2015); and the 90th percentile cost estimate (P90), which is the highest cost 
estimate elicited in many of the probabilistic expert elicitations and can be thought of as being close to 
the “worst case scenario” in terms of future technology performance. The second metric of interest is a 
measure of the range of uncertainty. Specifically, all three meta-analysis studies focus on the experts’ 
“normalized” uncertainty range around future costs. This is defined as the difference between the 10th 
and 90th percentile of each expert’s estimate divided by their median (P50): Urange = (P90-P10)/P50. 
Note that since the standardized cost metrics vary by technology (LCOE for solar and bioelectricity, the 
levelized cost of fuel production for biofuels, levelized capital cost for nuclear and levelized additional 
capital cost for CCS, as explained in the previous section), cost estimates (P10, P50 and P90) cannot be 



GGKP Working Paper 01|2016 

52 

 

compared across technologies, but only between sub-technologies. Conversely, the uncertainty range 
provides a normalized metric, which can also be analyzed for all technologies together.  

4.3.2. Independent variables   

As discussed above and in Section 2.1, experts’ cost estimates may vary due to a range of differences in 
study and expert characteristics.  The three meta-analysis papers described here complement the 
standardization process with regression analysis to understand whether and how elicited costs vary with 
changes in survey design, expert background, sub-technologies or assumptions about R&D investments. 
The meta-analytic approach allows achieving two goals. The first is to explore whether survey 
characteristics, expert characteristics and variations in RD&D budgets are associated with statistically 
significant differences in  the elicited standardized metrics.  The second is to investigate  the relationship 
between RD&D level and technology costs (and uncertainty). To perform such statistical analyses, the 
authors collect information on four categories of variables which are likely to impact elicited costs, 
namely:  

(1) the type of technology and sub-technology considered, i.e., whether the nuclear survey looked at 
Small Modular Reactors or large scale Gen. II/II+ or Gen. IV reactors; whether the solar survey looked at 
a generic PV technology, or specifically at novel PV, thin-film or concentrating PV, and its market 
segment (i.e., whether the solar survey considered residential, commercial or utility scale solar systems) 
(see Table 5 and Table 6); 

(2) R&D levels on which the elicited values are conditioned, i.e., either continuous R&D levels, or bins 
indicating low, medium or high investment (see Appendix C to the present document);  

(3) experts’ characteristics, which include background of the expert (industry, academia, public) and 
geographic location of the expert (EU vs US) (see Table 3 through Table 7 for a summary of information 
about experts); and 

(4) study characteristics, specifically whether the survey was administered in-person, whether results 
were published in the peer-reviewed literature, and the year when the estimate was collected (see Table 
3 through Table 7 for a summary of information about the different studies).   

The four categories of variables listed above may affect elicited costs for different reasons. For instance, 
the data presented in Section 2 and Appendix A of this document show that the range of estimates is 
significantly different both across and within technologies. That both the level of elicited costs and the 
cost-reducing potential of R&D investment differ between different technologies (e.g., solar versus 
nuclear) is not surprising. However, even within a given technology (e.g., nuclear), cost estimates may 
systematically vary depending on the sub-technology under consideration (e.g., large-scale Gen III/III+, 
large-scale Gen. IV, or small modular reactors) due to different levels of maturity, complexity, potential 
for cost reduction, the extent to which learning-by-doing has improved costs in the past, and the 
physical limits to the performance of each technological path. Uncertainty ranges can also vary across 
the different technologies (e.g., nuclear) and sub-technologies (e.g., large scale Gen. III/III+, large scale 
Gen. IV, or small modular reactors) considered. Within the same sub-technology, the specific market in 
which the technology competes (residential, commercial, utility) may also affect experts’ judgments.  For 
instance, electricity from solar PV generally competes with electricity produced by other sources, 
sometimes known as “grid” electricity.  But the price of grid electricity varies considerably depending on 
who is buying it, whether retail, commercial or wholesale customers.  Similarly, the scale of production, 
and thus costs, can differ considerably whether at the single-digit kilowatt scale of residences, tens of 
kilowatts for commercial installations and even thousands of kilowatts for utility scale.  While 
differences of elicited costs within technologies and across technologies and market segments are not 



The Future of Energy Technologies: An Overview of Expert Elicitations 

53 

 

unexpected, the three meta-analysis papers represent the first attempt at quantifying such differences 
in a ceteris paribus (all else equal) approach.  

The choice of R&D levels, on which the elicited values are conditional, is also expected to affect elicited 
costs. In fact, quantifying this impact is one of the motivations of some of the expert elicitation studies. 
The underlying assumption is that as R&D increases, future costs will be reduced. Keeping this in mind, 
comparing elicited values across surveys which confront experts with different R&D scenarios is not 
straightforward. In a given survey, elicited costs in 2030 may be lower not simply because the expert is 
confronted with a much higher R&D investment scenario, but also because of the characteristics of the 
expert consulted or the design of the survey. Cost estimates from different surveys and different R&D 
scenarios should hence be compared conditional on (i.e., controlling for) other factors. R&D investment 
assumptions could also affect expert confidence (uncertainty range), but the size or direction of this 
effect is not clear a priori. While one could expect more RD&D to reduce uncertainty, it is also possible 
that by opening more possibilities the uncertainty range will increase.    

To explore the role of R&D investment on elicited costs, the three studies collect information about the 
exact amount of R&D investments on which the cost estimates are conditional. In addition, they code 
R&D levels in bins indicating low, medium and high investments. The details on R&D levels of the 
different studies’ bins are included Appendix C. This coding process was carried out for two reasons. 
First, some studies characterized R&D scenarios with precise dollar amounts, while others did not do so 
explicitly but assumed business-as-usual high/low R&D scenarios. Second, while dollar amounts can be 
easily compared across studies, they also can be misleading. In fact, as argued by Kahneman (2011), 
people typically rely on heuristics when making estimates. Even though each study provided experts 
with detailed background information on historical levels of public R&D, experts still may find some 
difficulty in thinking about specific investment levels, and instead may use these levels to think about 
the outcomes of worst-case and best-case investment scenarios. If the latter, then the exact R&D 
investment levels would not necessarily reflect the effects of the full range of R&D.  Hence, a categorical 
definition of R&D investments could be a closer representation of the experts’ thinking than the actual 
R&D levels they are faced with. Thus, the meta-analysis studies evaluated both continuous and binned 
R&D variables.  

Expert characteristics may affect the elicited costs due to differences in availability heuristics between 
experts of different professional backgrounds or geographical areas. The literature on heuristics suggests 
the need to consider the possibility that experts in different technology areas, sectors or regions may 
have different experiences, which may lead them to make different estimates (see Section 2).  

Finally, study design may also affect results. For instance, in-person elicitations may allow more 
interaction and debiasing of the expert with respect to online elicitations (see Section 2).    

4.4 Results 

In this section, we summarize the results from the three studies for three key variables of interest: 
median costs, breakthroughs costs (as represented by the 10th percentile), and the range of uncertainty 
reported by experts. We focus on the main variables of interest, and on those for which estimates are 
comparable across the different meta-analyses. For instance, the year in which the estimate was elicited 
was not included in Anadón, Nemet, and Verdolini (2013), but it was found to be insignificant in 
Verdolini et al. (2015).  

4.4.1. Summary of results on the median impact of R&D 

Results of the three meta-analysis studies for P50 show that (1) higher R&D investments are (as 
expected) associated with lower future P50 cost estimates (but the cost-reducing potential of R&D varies 
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by technology); (2) ignoring expert background and survey mode can lead to biased average estimates of 
the relationship between R&D and costs; (3) a particular expert background (e.g., whether someone is in 
academia or private) is often associated with different estimates, either more pessimistic or optimistic 
depending on the technology; and (4) for certain technologies geographic location is associated with 
statistically significant differences in cost estimates. 

R&D levels: Using a simple model where P50 is a function of the continuous R&D investment levels, 
Anadón, Nemet, and Verdolini (2013) show that on average a doubling of yearly public energy RD&D in 
nuclear technologies (i.e., a 100% increase) is associated on average with a 7% decrease in the best 
estimate (P50) of 2030 overnight capital costs. Focusing on the categorical R&D levels (low, medium and 
high investments), high public RD&D investments are associated with P50 nuclear capital costs that are 
on average approximately 21% lower than the “low” public R&D investment scenario. Adding expert 
background, survey design and sub-technology variables as control variables significantly improves the 
fit of the model and increases the coefficient associated with the continuous R&D variables by roughly 
25%. This result suggests that the implied returns to R&D are somewhat higher than in the model with 
no covariates – a doubling of public R&D yearly budget for nuclear technologies would give rise to an 8% 
decrease of nuclear costs in 2030, on average and ceteris paribus. Finally, the authors find some 
evidence of diminishing marginal returns to R&D investment, namely of a higher impact of additional 
R&D investment at lower budget levels. This is, however, not a strong result and only emerges in a 
statistically significant way in a subset of models.  

Focusing on solar technologies, Verdolini et al. (2015) confirm that the relationship between R&D 
investment and median cost estimates is negative and statistically significant – the higher the R&D 
investment, the lower the solar (LCOE) cost estimates. Compared to the low R&D scenario, the medium 
R&D scenario is associated with solar costs that are roughly 20% lower. Conversely, the high RD&D 
scenario is associated with solar costs that are roughly 35% lower than the low R&D scenario. This seems 
to suggest that R&D investment may be associated with diminishing marginal returns, as increasing R&D 
funding from low to mid has a greater impact on costs than increasing R&D funding from mid to high. 
Using the continuous R&D variable, the authors show that a 100% increase in investment is expected to 
lower expected cost by 14%, but, as in the nuclear paper, find no robust evidence of diminishing 
marginal returns.  

Nemet, Anadón, and Verdolini (2015) present similar negative and statistically significant results of R&D 
on P50 for all five energy technologies in the Supplementary Information to the paper. Most 
importantly, they suggest that average expert expectations about the impact of R&D vary by technology. 
Going from a low to a high R&D scenario, median costs drop by roughly 4% for solar, 2% for bioenergy 
and 1% for nuclear and biofuel. Note, however, that this result rests on the use of categorical variables 
and does not allow a comparison of the impact of one additional dollar (or per cent increase) by 
technology. However, the authors present additional results for P10 (see below) that further support the 
conclusion that the impact of R&D investment varies by technology.  

 Figure 9 shows that, even without controlling for other covariates, higher R&D levels for a specific sub-
technology (in this case biomass-based gasoline-substitutes) are associated with more optimistic P50 
estimates. 

Figure 9: Standardized elicited P50 levelized non-energy biofuel cost for the five biofuel elicitations 

under the low, mid and high R&D scenarios 
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Expert background and geographic location: Anadón, Nemet, and Verdolini (2013) show that expert 
background and geographic location are associated with statistically significant differences in future 
nuclear cost estimates. In the preferred model (with all covariates) public sector and industry experts’ 
costs expectations are 14% and 32% higher, respectively than academics. Experts in the US are more 
optimistic than their EU counterparts:  median expected costs are, on average, 22% lower. The results 
emerging from the solar meta-analysis are somewhat different (Verdolini et al. 2015). Specifically, they 
do not point to a difference between the elicited costs of experts from different backgrounds, suggesting 
greater consensus among experts on solar technologies. The coefficient associated with the EU dummy 
variable is also never statistically significant from zero, suggesting that EU experts are not different from 
their US counterparts regarding expected solar costs.  

As discussed in Verdolini et al. (2015), one possible explanation for the differences between the solar 
and the nuclear results is that in both technologies industry experts are more familiar with recent 
construction than are public sector and academic experts.  In nuclear, industry experience in 2007-2011 
would have created a heightened awareness of the recent challenges, delays and escalating costs, 
whereas in solar, industry experience would have heightened awareness of rapidly falling costs and 
expanding markets, partly as a result of the greater public acceptance of solar PV. The information 
available to private experts (on which their perceptions have been conditioned) could be different to 
that of other experts due to the availability heuristic (Kahneman 2011).  

The results presented in Nemet, Anadón, and Verdolini (2015) generally confirm those presented by the 
other two papers. With respect to nuclear technologies, a comparison of coefficients suggests that 
academics are associated with the lowest P50 estimates, while industry experts with the highest. In 
Nemet, Anadón, and Verdolini (2015), however, the precision of the estimates is lower than in Anadón, 
Nemet, and Verdolini  (2013), and the coefficients are below acceptable levels of significance (although 
not very far from them). This is attributable to differences in sample size between the two studies. The 
same holds true with respect to the EU dummy variable, which is in line with results presented above 
but not statistically significant. Finally, Nemet, Anadón, and Verdolini  (2015) show that EU experts have 
more pessimistic expectations about P50 than US experts on bioenergy and that public experts have the 
lowest estimates on bioenergy and the highest on biofuels.  

Elicitation design: For nuclear power, the P50 cost estimates from F2F interviews are not statistically 
different from those of online surveys, when controlling also for other factors (Anadón, Nemet, and 
Verdolini 2013). As discussed by the authors, this result needs to be taken with care given that only a 
very small per cent of the data included in the nuclear meta-analysis was in fact carried out in-person. In 
contrast, solar power P50 cost estimates of surveys conducted in-person were on average roughly 60% 
lower than those of online surveys, suggesting that in-person elicitations lead to more optimistic 
estimates for solar power (Verdolini et al. 2015). This is in line with what is presented in Nemet, Anadón, 
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and Verdolini  (2015): in-person elicitations are associated with significantly more optimistic (lower) 
elicited costs in solar and biofuels for P50 and P10.  For each of the five technology areas analyzed, at 
least one elicitation was in-person and one over the mail or online. Tables 2-6 show what elicitations 
were conducted in-person versus using other formats, and detail other survey and expert characteristics.   

Sub-technologies: Future overnight capital costs are expected to be higher for both Gen. IV and SMR 
technologies with respect to Gen. III/III+ technologies by approximately 23% and 24%, respectively 
(Anadón, Nemet, and Verdolini 2013). In Verdolini et al. (2015), thin-film technologies are associated 
with lower future median costs than all other solar technologies. Moreover, elicited costs are roughly 46 
per cent lower for utility scale technologies than for small-scale solar power and 15 percent lower for 
commercial scale technologies than for small-scale solar power. As described in the paper, the latter 
difference is in line with the current difference between wholesale and retail power purchase prices at 
midday when solar would be used.   

4.4.2. Summary of results on breakthrough costs   

Here we present the results on P10, interpreted as a breakthrough cost estimate. Taken all together, the 
results of the three meta-analyses studies indicate that R&D has a different impact on P10 for different 
technology areas, and that expert background and geographic area are associated with statistically 
significant differences in a few cases. On average, P10 is also lower in surveys that have been conducted 
in- person. 

R&D levels: Verdolini et al. (2015), show that higher R&D investment not only affects the median 
outcome of future solar LCOE, but also the probability of breakthroughs, as measured by the P10 
estimates. Specifically, a medium R&D scenario is associated with elicited costs that are roughly 30 
percent lower than a low R&D scenario and high R&D scenario is associated with elicited costs that are 
roughly 40 percent lower. Nemet, Anadón, and Verdolini (2015) show that this finding is consistent and 
statistically significant across all technologies considered, with the exception of CCS. The impact of going 
from a low to a medium R&D scenario is technology specific. This is likely to be due to two main factors.  
First, each expert may believe that each technology may have different potential for improvement. 
Second, R&D medium and high investment levels generally differ by technology. Keeping this in mind, 
results indicate that when going from a low to a medium R&D scenario the expected P10 drops by 
between 0.7%  for nuclear and 3% for solar. Moreover, moving from a mid to a high R&D scenario 
roughly doubles the impact of R&D on costs. The technology-specific cost reduction potential of R&D 
investments is further confirmed by specifications that use the continuous R&D variables.  

Expert background: Verdolini et al. (2015) present some evidence that EU experts are more optimistic 
than their US counterparts about the future P10 costs of solar power, as suggested by Figure 10. 
However, this difference is statistically significant only when using the continuous R&D variable. In this 
case, the model indicates that the P10 estimates of EU experts are around one third lower. The study 
suggests that a higher confidence of EU experts in the future breakthroughs of solar technologies could 
indeed be plausible given the different developments of solar technologies in the EU and the US over 
recent years. Moreover, the authors argue that such a difference may depend on the fact that EU 
experts were the only ones who provided estimates for LCOE, as opposed to solar technology 
components, such as module capital cost and efficiency. Hence, it is possible that the data conversion 
process introduced differences in expert estimates. Nemet, Anadón, and Verdolini (2015) further show 
that EU experts are less optimistic than US experts in terms of the best-case technology development 
scenario (P10) for both biofuel and bioelectricity.  

Focusing on expert background, Nemet, Anadón, and Verdolini (2015) show that results are highly 
technology specific. For instance, private sector experts are the most optimistic with respect to 
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breakthrough costs for biofuel technologies, but they are the least optimistic for nuclear technologies. 
Public experts are the most optimistic for bioenergy and academics are most optimistic for CCS.  

Survey design: Verdolini et al. (2015) show that elicitations conducted in-person were associated with 
more optimistic responses about non-central solar costs estimates (P10 and P90).  This also holds true 
with respect for P10 for biofuels and nuclear, as shown in Nemet, Anadón, and Verdolini (2015). 

Figure 10: Standardized elicited P10 levelized nuclear capital cost for the four nuclear elicitations  

 

Note: Grouped by  (a) in-person vs. not in-person elicitations; and (b) EU vs. US experts; and (c) academic vs. 
industry experts . 

4.4.3. Summary of results on the range of uncertainty 

The uncertainty range (or confidence) is a very important metric to evaluate for two reasons.  First, the 
future of technology is inherently uncertain, and thus policymakers need to make decisions with a full 
understanding of the extent of this uncertainty. Second, the literature on expert elicitations (see Morgan 
2014) shows that experts are typically overconfident – often reporting uncertainty ranges that are too 
narrow.   

The collective results of Nemet, Anadón, and Verdolini (2015) show that, in contrast to P50 and P10, 
public R&D investments are not statistically significant predictors of the uncertainty range (Urange), with 
the exception of solar power.  That is, higher levels of investments are not systematically associated with 
narrower or wider uncertainty ranges (or confidence) in the three studies. But expert background, 
geographic area and survey mode are associated with statistically significant differences in Urange, with 
academics expressing more uncertainty than industrialists, EU experts expressing less uncertainty than 
US experts, and in-person surveys resulting in more uncertainty than online or mail surveys. In some 
areas, sub-technologies are also associated with different uncertainty ranges.  

- R&D levels: The nuclear study  (Anadón, Nemet, and Verdolini 2013) shows that R&D levels are not 
associated with statistically significant differences in Urange. In the solar power meta-analysis paper by 
Verdolini et al. (2015), higher R&D generally has a positive coefficient in the Urange specifications, 
meaning that the range of uncertainty increases in the higher R&D scenarios. Hence, increasing the level 
of R&D with which experts are confronted in the elicitation reduces their confidence. This suggests that 
R&D has an impact on the whole distribution of costs – shifting the distribution of experts’ predictions 
lower and expanding them. As the authors discuss in the paper, this could be due to a number of 
reasons. For instance, medium and high R&D scenarios might mean that funding is also devoted to sub-
technologies, which are newer and/or riskier, or that higher total investment allows for the inclusion of 
more of the riskier R&D, resulting in an increase in the uncertainty around future central estimates. An 
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alternative explanation is that experts confronted with  significantly different (higher) R&D scenarios 
from the business-as-usual might have more difficulty in fully projecting costs as the hypothetical 
funding scenario is very far away from what they ever experienced.  The breadth of technological 
pathways available in high R&D may improve outcomes in the high-cost outcome, thus reducing the 
Urange.  The “all technology” meta-analysis (Nemet, Anadón, and Verdolini 2015) shows that  R&D is not 
significant when pooling results from all technologies, even though the technology-specific regressions 
confirm the findings for solar (see Verdolini et al. 2015) and show that higher R&D investment scenarios 
are associated with narrower uncertainty ranges for the case of biofuels.   

- Expert selection: The nuclear meta-analysis paper (Anadón, Nemet, and Verdolini 2013) shows that US 
experts have significantly wider uncertainty ranges when compared to EU experts, approximately 16% 
larger. This is not the case for solar technologies, where expert background is not associated with 
statistically significant differences in Urange (see Figure 11). Pooling all technologies, Nemet, Anadón, 
and Verdolini (2015) find that academic experts generally provide wider uncertainty ranges, while EU 
experts provide smaller uncertainty ranges, which is consistent with the nuclear results (Anadón, Nemet, 
and Verdolini 2013). However, once again, results are technology specific. For instance, the negative and 
statistically significant coefficient associated with EU experts is largely attributable to biofuels. The 
nuclear specification confirms that US experts are associated with wider uncertainty ranges (see Figure 
11), but the precision of the estimate is low and the coefficient is not statistically significant. Finally, the 
positive coefficient associated with academia in the pooled regression is attributable to the nuclear 
observations, where both academia and public are associated with positive and statistically significant 
coefficients. As in the case of P50, the small differences in terms of significance between the nuclear 
study (Anadón, Nemet, and Verdolini 2013) and the all technologies study (Nemet, Anadón, and 
Verdolini 2015) are attributable to differences in sample size.  

- Survey mode: The all technologies elicitation showed a very robust result of in-person elicitations 
resulting in larger uncertainty ranges when compared to online or mail elicitations (when controlling for 
a range of observable characteristics that further differentiate studies). This suggests that current online 
methods do not prompt experts as much as the presence of an interviewer to report wider uncertainty 
ranges.   

- Sub-technologies: Sub-technologies are associated with different uncertainty ranges. In the nuclear 
study (Anadón, Nemet, and Verdolini 2013), the uncertainty range for SMRs is around 14% smaller than 
that for large scale Gen. III/III+, suggesting that experts are relatively confident about their cost 
estimates on these systems, which are expected to be delivered to the site fully constructed from the 
manufacturing facilities even though the current experience is limited and no operating licenses have 
been issued in either the US  or the EU. Market characteristics do not have significant effects on 
uncertainty range.   
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Figure 11: Standardized elicited Urange for solar LCOE for the five solar elicitations  

Note: Grouped by  (a) in-person vs. not in-person elicitations; (b) EU vs. US experts; and (c) academic vs. 
industry experts.  

4.5 Conclusions   

The meta-analysis studies reviewed in this section apply statistical techniques to explore whether 
choices in survey design, expert selection and sub-technologies within each survey impact in a 
systematic way the elicited cost values from various elicitation studies. They also aim at isolating the 
implied effect of RD&D investment on elicited costs while controlling for other variables.  

The insights gleaned from these studies can be summarized as follows. First, public RD&D investment 
has an impact on elicited costs: as expected, the higher the RD&D scenario, the lower the elicited costs. 
Such impact is, however, technology specific in that the returns to RD&D investment differ by 
technology in a significant way. This reflects different technological maturity and perceived cost-
reduction options. The impact of RD&D on cost is confirmed also for extremes of the distribution. 
Conversely, public RD&D investment does not generally affect the confidence of experts.  Specifically, 
higher RD&D budget assumptions do not widen the uncertainty range of elicited costs.  

In a number of cases, expert background and geographic location are associated with lower or higher 
cost estimates, but this effect is technology specific. This probably reflects the experience of experts 
with a given technology. It also raises the issue of selecting experts from different backgrounds to 
capture a wider variation in elicited costs.  

The results also demonstrate that the specificity with which technologies are defined is an important 
elicitation design characteristic to consider. More broadly, the uncertainty range results strongly indicate 
that in-person surveys are associated with broader uncertainty ranges. 

These findings can and should be further tested with an ad hoc experimental design in which only one 
variable is changing at a time. 
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5. Using expert elicitation data to inform policy analysis   

This section reviews the work that incorporates expert elicitations data into modelling and decision 
frameworks. We start by discussing the importance of explicitly including uncertainty into decision 
frameworks. We go on to discuss different modelling paradigms, with an emphasis on how they are 
useful to policy decision-makers. We then review examples of the different paradigms that incorporate 
the elicited data discussed in this report. 

While elicited data can be used to calculate means or medians, and can be used in deterministic analysis, 
its greatest value is that it allows us to explicitly include uncertainty in decision frameworks. Uncertainty 
is valuable whenever there is non-linearity in a problem, and non-linearity can take different forms. One 
form that many people are familiar with is risk aversion, namely a preference to avoid risk. A decision 
maker often prefers to give up some amount of something good (e.g., pleasure or money) in order to 
avoid some risk. In economic models, risk aversion is represented by a concave (that is, non-linear) utility 
function (Varian 1992). A second form of non-linearity arises when uncertainty is coupled with learning 
and the possibility of future options. Often decision makers are faced with the possibility of making 
decisions in the future after learning about the outcome of uncertainties in the short term. In this case, 
the best near-term decision could be significantly different from what it would be in a case with no 
future options. For example, near- term decisions that avoid lock-ins or irreversible effects may be 
preferred in this case. This was most famously discussed by Dixit and Pindyck (see Dixit and Pindyck 
1994). A term that is often used in this regard is “option value.” A near-term alternative has “option 
value” when it increases the flexibility of a decision maker to react to the outcome of realized 
uncertainties in the future. Finally, there can simply be non-linearities in the underlying problem itself. In 
our case, there are non-linearities in the impacts of climate change, in the relationship between R&D 
investment and outcomes, and in the interactions between technologies. Collectively, these issues make 
it important to consider the tails of distributions and not just average values. This idea has been 
characterized by Sam Savage as “the flaw of averages” (Savage 2002), which posits that the best 
alternative under uncertainty is not necessarily the average of the best alternatives under the range of 
inputs.  

Expert elicitation data can be used in a number of different modelling paradigms to gain different 
insights (for an overview, see Baker, Olaleye, and Reis 2015).  

Most simply, elicitation data can be reduced to a representative number for future technology costs and 
used to calibrate energy system or climate energy integrated models (we will use the acronym IAMs 
(integrated assessment models) from now on to refer to both categories) that are commonly used to 
assess future energy and climate policies or directly to inform policy makers. For example, a modeler 
might use a mean or median value of future costs. While this is very valuable for the models, and can 
lead to estimates that are in line with the views of technological experts, this use of the elicitation data 
does not take advantage of the richness of the probabilistic information collected through the expert 
elicitations. Here, in order of increasing complexity, we discuss a set of modelling paradigms that take 
advantage of the richness of the data.  

The richer set of probabilistic information collected through elicitations can be used in sensitivity 
analysis, uncertainty analysis, or models which fully incorporate  decision-making under uncertainty .  

Elicitation data can be used to inform sensitivity analysis. The range of elicited values can be used to 
evaluate the extent to which the outputs of a model change with changes in input values. High and low 
technology values from elicited data can help evaluate projected societal outcomes under extreme 
assumptions. This has been most typically done by changing one parameter at a time. A recent approach 
to sensitivity analysis allows all uncertain parameters to change together. Moreover, this method has 
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the ability to use the elicited probability distribution for the random draws (Anderson et al. 2014), 
allowing the sensitivity analysis to focus attention on areas with positive probability. Sensitivity analysis 
has the benefit of being computationally tractable, and of identifying areas of interest. It is most useful 
in a descriptive framework and results can easily be presented to final users. It is an important first step 
to understand robustness of a given strategy or to provide insights on a model to non-experts. It has the 
weakness, however, of falling prey to the flaw of averages.  

Adding a layer of complexity, elicitation data can be used in uncertainty analysis frameworks. By 
uncertainty analysis we mean analyses that produce probability distributions over the outputs of 
interest. One prominent example of an uncertainty analysis is the Monte-Carlo type analysis. Here, we 
use the term “Monte-Carlo type” to include also more sophisticated methods, such as the Latin 
Hypercube sampling technique (Iman and Conover 1982). In  Monte-Carlo type analyses, random draws 
are taken from an underlying probability distribution (or probability distributions) and used as inputs to 
a model, often an IAM. This produces a probability distribution over the outputs of interest, such as the 
cost of a particular stabilization goal, or radiative concentration pathway (RCP), or a specific energy 
policy. Other methods can also be used to generate such probability distributions (e.g., propagating a 
probability distribution through a model). Similar to sensitivity analysis, uncertainty analysis is most 
useful in descriptive frameworks where researchers are interested in understanding what the world 
might look like in the future. While it provides insights, it does not directly inform near-term decision-
making and does not answer certain questions.   For instance, it does not answer the question as to 
what the optimal amount of funding is. This is due to two key limitations of Monte-Carlo type analyses, 
as discussed in Crost and Traeger (2013). Specifically, (1) each run of the model is deterministic once a 
draw has been made from the distribution, and (2) optimal short term hedging solutions cannot be 
calculated. Thus, Monte-Carlo type analyses do not tell us what the best early stage decision is, nor do 
they give insight into which early stage decisions may have the most option value.  

The probability distributions derived from uncertainty analysis, however, can be used as inputs to 
decision models, providing insights, for example, on how to allocate R&D investments to minimize the 
probability of a bad outcome, such as a very high carbon price, or to maximize the expected value of 
good outcome, such as domestic energy production. An approach such as this – using uncertainty 
analysis to derive probability distributions, which are in turn used in simple decision models – is 
particularly valuable in cases where there are a number of uncertain variables that must all be 
considered simultaneously (Chan and Anadón 2015; Anadón, Bunn, and Narayanamurti 2014). 

Elicited distributions can also be used in exercises that explicitly model near-term decision-making in the 
face of uncertainty and apply various criteria to evaluate the impact of these different near-term 
alternatives. Such models can be divided into single-stage, two-stage and multi-stage models. In a single-
stage model, there is a single near-term decision to be taken prior to the realization of an uncertain 
outcome. The best near-term decision is the one that maximizes the expected utility over the outcomes. 
In a two-stage model there is a near-term decision, but also a later stage recourse decision that comes 
after some of the uncertainty has been resolved. Two-stage models have the benefit of identifying near 
term alternatives that have option value (Dixit and Pindyck 1994). Finally, there are multi-stage models 
that incorporate a series of downstream decisions. Two methods for implementing multi-stage models 
are Dynamic Programming (Bellman 1956), with a high dimensionality solution technique,  Approximate 
Dynamic Programming (ADP)  gaining considerable traction lately (Powell 2007); and Stochastic 
Programming (Birge and Louveaux 2011). All multi-stage frameworks face computational challenges due 
to the “curse of dimensionality.” Stochastic programming problems become quite large with the number 
of uncertainty outcomes; ADP models become quite large with the number of state variables. It is an 
open question whether the addition of stages beyond two provides considerable insight (Baker 2006; 
Webster, Santen, and Parpas 2012). 
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The computational limits of the multi-stage methods, and to some degree even two-stage methods, 
make it difficult or even impossible to include a significant number of continuous uncertainties 
simultaneously. Thus, in cases in which uncertainty about several technologies interact in the market it 
may be necessary to resort to Monte-Carlo methods to understand the impact of these interactions. At 
the conclusion of this section, we will revisit this issue in light of the specific examples presented below.  

In the rest of this section, we review papers that implement the expert elicitation data reviewed in this 
report into modelling frameworks. We start by looking at work that falls under the categories of 
sensitivity analysis and uncertainty analysis. This work is descriptive with a focus on understanding the 
implications of the probability distributions over technological costs and other inputs on the outcomes 
of IAM. We then go on to review the work that has explicitly included a decision framework in order to 
suggest insights about the optimal RD&D portfolio. Given the nature of the problem, the following two 
sections are presented in rather detailed and technical terms. Section 5.3 concludes, summarizing the 
main insights. 

5.1 Technology insights from expert elicitation in modelling frameworks  

In this section, we summarize contributions that perform sensitivity analysis and uncertainty analysis, 
and that do not focus on near-term decisions but rather try to understand connections between inputs 
and outputs. We discuss the individual studies in order of increasing complexity.   

Ricci et al. (2014) perform a simple sensitivity analysis, using the World Induced Technical Change Hybrid 
(WITCH) model (Bosetti et al. 2006) and best/worst technology development scenarios derived from the 
CCS elicitation performed jointly by UMass and FEEM to bound the possible future costs and efficiency 
of CCS technologies. The modelling results indicate that R&D outcomes are likely to dominate 
incremental demand-side technical change, and that R&D appears to be more efficient than a large, 
near-term carbon tax.  

Barron and McJeon (2015) undertake a sensitivity analysis that is informed by the probability 
distributions over the parameters. They use a range of technology cost and performance parameters 
resulting from the TEaM project (including FEEM, UMass, and Harvard surveys in five technology areas 
harmonized and aggregated.) These parameters are used as an input to the Global Change Assessment 
Model (GCAM)  (Edmonds et al. 2004) to investigate how much a technology would need to improve 
before it is likely to have a significant effect on the cost of controlling climate change. They find that the 
capital cost of nuclear has the largest impact on the societal cost of abatement, followed by the costs of 
biofuels technologies and CCS. The efficiencies of these last two categories, however, played very little 
role. In addition, they find that the impacts of technologies may vary depending on socioeconomic 
scenarios.    

An important question is how much of the information from the elicitation is key to the results vis-a-vis 
the other implications embedded in the specific IAMs employed in the analysis. For this reason, Bosetti 
et al. (2015) perform a multi-model global sensitivity analysis. A global sensitivity analysis considers a 
large number of parameters simultaneously, rather than one at a time. Specifically, they use the same 
harmonized and aggregated elicitation data as the paper above, but as input to three different 
Integrated Assessment Models (GCAM, WITCH and MARKAL-US), and they use covering distributions to 
regulate the random draws of the parameters. They find that when emissions are unconstrained, 
assumptions about the cost of nuclear are the most important determinants of societal costs associated 
with energy production. This result is robust across all three models. Under constrained scenarios (RCP 
2.6 and 4.5), in addition to nuclear costs, the costs of biomass technologies gain in importance.  Biofuels 
gain in importance because they provide a key low-carbon alternative in the transportation system, and 
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electricity from biomass gains in importance because it can be combined with CCS to produce negative 
emissions.  

Olaleye and Baker (2015) perform both a sensitivity analysis and an uncertainty analysis. They use the 
UMass elicitation results to do a large-scale scenario analysis using the Dynamic Integrated Climate- 
Economic (DICE) model (Nordhaus 1994). They run combinations of all the elicited endpoints for six 
technologies (including biofuels and bioelectricity) through a version of the DICE model that includes 
uncertainty and learning in climate damages. They look for patterns in the results and find that CCS and 
bioelectricity are complements, while most of the other energy technology pairs are substitutes. As 
explained above, the reason that CCS and bioelectricity are complements is that the presence of these 
two technologies together (often called BECCS) allows for negative emissions.  The biomass technology 
can be carbon neutral, with each new crop absorbing CO2 (the addition of CCS then leads to net 
negative emissions). This makes very tight stabilization goals much more economic.  Their results 
confirm the importance of nuclear and CCS, given the UMass elicited endpoints. The first part of the 
paper can be categorized as a kind of sensitivity analysis over technical change. It is quite sophisticated 
because the researchers do the sensitivity analysis over a stochastic version of a DICE model that 
explicitly incorporates uncertainty and learning in climate damages. The second part of the paper 
produces probability distributions over welfare for different R&D portfolios, making it an uncertainty 
analysis.  

Several studies can be considered uncertainty analyses (Baker, Chon, and Keisler 2009a; Baker, Chon, 
and Keisler 2009b; Baker, Chon, and Keisler 2008a; Baker, Chon, and Keisler 2010). They present the 
results of expert elicitations, covering nuclear, CCS, solar PV and batteries for vehicles, and then combine 
those results with a GCAM model to determine the impact of the elicited advancements on the Marginal 
Abatement Cost curve (MAC). The MAC measures the cost of reducing emissions by an additional tonne 
of carbon and it is a key determinant of the optimal level of abatement (Weyant 2004; Baker, Clarke, and 
Shittu 2008).  Figure 12 shows how advancements in the different technologies compare in terms of 
their impact on the MAC curve. The papers, when analyzed together, have a couple of salient results. 
First, the elicited endpoints for CCS and nuclear have a more significant impact on the MAC for this 
particular IAM that is larger than that of solar PV and batteries for vehicles. Second, most of the 
technologies primarily shift the MAC down (i.e., most technologies tend to reduce the MAC by a fixed 
amount). CCS, however, has a markedly different impact on the MAC: it pivots the curve down, reducing 
the MAC by a fixed percentage. This means that the non-CCS technologies tend to be better at lower 
levels of abatement, or lower carbon taxes; CCS tends to have an advantage at very high abatement 
levels.  This set of papers uses deterministic runs of an IAM to derive conditional probability distributions 
over the impacts of R&D. These distributions can then be used in decision-focused models, providing 
insight into the impacts of R&D investments.  
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Figure 12: Marginal abatement cost (measured as a percentage of gross domestic product GDP) 

 

Note: Curves of some selected energy scenarios generated by GCAM for the year 2050. 
Source: Adapted from Olaleye and Baker (2015).  

A set of interrelated papers produces probability distributions over the outcomes of R&D investment 
and other policies, and can be considered uncertainty analyses. Nemet and Baker (2009) use the results 
of the UMass solar elicitation in a simple model that includes the impacts of both technology RD&D and 
technology subsidies. They find that, under various assumptions about policy and the cost of grid 
integration, the outcomes of RD&D generally swamp the incremental technical change coming from 
subsidies, but that subsides may play an important role in the event that RD&D outcomes are 
unfavourable.  Nemet, Baker, and Jenni (2013) employ the elicitation results in a cost model of CCS and 
find that the three most mature technologies tend to dominate.  More specifically, the minimum cost of 
capture is determined by one of these technologies in 74% of the cases. On the other hand, there is still 
a benefit to diversifying further: a full portfolio of CCS technologies doubles the likelihood of achieving a 
cost target of $60/tCO2 compared to investing in only one technology. Nemet et al. (2015) use these 
results in a dynamic model comparing RD&D, subsidies and carbon taxes in terms of how much carbon is 
sequestered by coal CCS. They find that the carbon tax has the largest impact, but that more 
demonstration plants are needed along with additional research to understand growth constraints and 
knowledge spillovers.  

Some of the results in Anadón, Bunn, et al. (2011) and Anadón, Bunn, and Narayanamurti (2014) can be 
considered part of an uncertainty analysis. These studies incorporate the Harvard elicitation results in 
the MARKAL-US model, contingent on RD&D investment. This work included probability distributions of 
costs and performance over six technology areas:  solar PV, advanced vehicles, biofuels and 
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bioelectricity, coal and gas (with and without CCS), nuclear technology, and utility-scale energy storage.  
The researchers break these areas into 25 individual products:  three types of solar PV applications, five 
types of vehicle technologies, three  types of biofuel productions, one type of bioelectricity plant, four 
nuclear technologies, four fossil technologies, and five utility-scale storage technologies. Relying on an 
additional set of high level experts, researchers selected a pessimistic, a middle-of-the-road, and an 
optimistic expert for each technology to determine the impact of the differences in expectations about 
future costs. The study also investigated the impact of demand-side policies, such as cap-and-trade 
policies and clean-power standards. Results indicate that even the more ambitious public RD&D 
scenarios will do little to significantly reduce CO2 emissions without complementary demand-side 
policies. In the absence of any price on carbon, even a 20-fold increase in RD&D will still lead to an 
increase in emissions between 2010 and 2050 (with about 95% probability, far from the goal of a five-
fold reduction). However, the paper concludes that “(t)he median result shows that increasing RD&D 
funding from the BAU to the expert recommended RD&D scenario with largest investments in all 
technologies, under a CO2 cap policy, results in an increase in consumer surplus in 2050 of about $35 
per dollar invested in energy RD&D.” In addition to the results presented here, this work also 
incorporates the results of a Monte-Carlo type analysis into a decision model to support R&D portfolio 
decisions.  Thus, it is described in the next section. 

 

5.2 Expert elicitations in decision frameworks 

Data from elicitation surveys have also been employed in more complex decision-analysis frameworks  
to provide insights about optimal policies, typically concerning RD&D investments, but also demand-side 
policies, such as carbon taxes (see Figure 13). These papers build on the results of both the elicitations 
and the energy economic models. 

We note that almost all of the papers below use a multi-track framework, which employs the IAMs to 
generate the macro-economic value of different technological outcomes, and then combine these 
results  with a simpler purpose-built decision model.  

Figure 13: Representation of the optimal RDD research process 
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Anadón, Bunn, et al. (2011) and Anadón, Bunn, and Narayanamurti (2014), discussed above, also include 
a decision analysis framework. In this part of their work, the authors use the means of the distributions 
of selected experts to calibrate a surface-response model to get at the relationship between RD&D and 
outcome metrics.  They use constrained non-linear multivariable optimization to find optimal portfolios, 
contingent upon policy scenarios. Figure 14 shows an example of their results.  The research found that 
there is significant underinvestment in the current public RD&D budget for utility-scale energy storage, 
and an indication that RD&D for  batteries for vehicles was also underfunded. This last finding surfaced 
despite the fact that vehicles were expected to have the smallest public-RD&D-induced cost decreases. 
This result is due to the large number of vehicles available and the general difficulty in reducing 
emissions from transportation. This illustrates the importance of combining the elicitations about future 
technological prospects with a model of the economy to estimate the impact on society.  Some RD&D 
investments were found to depend on the policy scenario (e.g., solar PV is important under a cap-and-
trade policy scenario and bioenergy is important under a no policy scenario). This work focused on the 
role of different exogenous policies and used elicitation data to calibrate the model, but it did not 
explicitly include uncertainty in the analysis.  

Figure 14: Fractions of the total RD&D budget 

 

Note: Optimally allocated to technology areas to maximize consumer and produced surplus for a range of total 
RD&D budget levels for middle-of-the-road experts under a cap-and-trade scenario.  
Source: Anadón, Bunn, et al. 2011 

Chan and Anadón (2015) delve deeper into the methods for optimizing R&D portfolio allocations, using 
continuous R&D investments and a total of 25 individual technology areas impacted by six technology 
R&D programs – all covered by the Harvard expert elicitations. The results indicate that (1) while 
marginal returns to R&D investment decrease, a 10-fold expansion from 2012 levels in the R&D budget 
for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar 
photovoltaic technologies can be justified by expected returns to economic surplus; (2) the greatest 
economic returns to public R&D investment are in energy storage, solar photovoltaics, and bioenergy; 
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and (3) the 2012 US R&D budget allocation was very different from the optimal allocation to maximize 
consumer and producer surplus.   

The next set of three papers uses stochastic programming in two-stage models to explicitly include the 
impact of uncertainty and learning on the optimal portfolio. Each of these papers uses the aggregated 
probability distributions derived from the UMass elicitations, and each uses GCAM to derive economic 
benefits. Baker and Solak (2011) combine economics and decision analysis, and use elicitation data to 
inform RD&D policy in response to global climate change. They use the Baker data on solar, CCS, and 
nuclear, and the MAC curves resulting from GCAM. They calibrate a reduced-form RD&D stochastic 
programming portfolio model using the DICE model, and implement the stochastic MACs in that model. 
The researchers explore how the optimal investment in RD&D changes with increases in the risk of 
climate damages, where “risk” is defined as a mean-preserving spread in damages. They find that, given 
a budget constraint, the composition of the optimal RD&D portfolio is robust to climate related risk. This 
is because the elicitation data imply that the individual projects are fairly differentiated, with some 
having a low cost, high probability of success, and a large impact if successful, while others do not. That 
is, there are not very many projects that are on the “knife’s edge”, so assumptions about the riskiness of 
climate damages do not have much impact. The overall optimal investment in technical change, 
however, does depend on the risk in climate damages, first increasing as the risk increases, then 
decreasing. This result relates to the role that technical change plays in combatting climate change. The 
value of technical change is that it reduces the cost of abatement.  As damages move from low to 
medium, abatement increases, but once abatement reaches 100% at about the medium level, it does 
not increase further, regardless of the damages. Thus, once damages are at about the medium level, the 
impact of technical change is maxed out.  The researchers also look at mean-preserving-spreads that 
stretch the distribution out and find that as larger and larger catastrophes are considered, their 
probability gets lower and lower. This combination means that technical change has only a small 
likelihood of a fixed impact in high risk cases, lowering its value.    

Baker and Solak (2014) build on these results, implementing the stochastic MAC curves into a stochastic 
programming version of the DICE model, and investigating how the optimal RD&D portfolio changes 
with changes in risk and also with changes in the policy environment. They consider the optimal policy in 
DICE (“DICE optimal”), a policy based on the Stern report, a policy based on Al Gore’s suggestions, and a 
policy aimed at constraining temperatures to two degrees. Similar to the above paper, they find the 
optimal portfolio is quite robust across the policy environments, risk cases and assumptions about 
opportunity cost. That is, investments in a robust set of technologies will produce a positive payoff 
whether climate change policy is “go-slow” or more aggressive. Under a lenient climate policy, and in 
the absence of technological change (similar to a Nordhaus policy), a breakthrough in energy technology 
tends to significantly increase the amount of abatement, thus improving the environmental outcomes. 
On the other hand, in a policy where emission reductions are high (such as Stern or Gore) a 
breakthrough in technology tends to significantly reduce the cost of emissions reductions.  This is 
illustrated in Figure 15. Technological change plays a different but important role in both policy 
environments.  
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Figure 15: Range of temperature paths and range of total abatement costs for the DICE optimal 
and Stern policies 

  

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile.The left-hand side panel shows the sensitivity of temperatures in the DICE optimal policy to technology; 
the right-hand side panel shows the sensitivity of costs in the Stern policy to technology. 
Source: Baker and Solak (2014). 

McJeon (2012) uses data on CCS, solar and nuclear, along with modelling results from GCAM, in a 
stochastic dynamic programming model aimed at providing insights into the timing of RD&D 
investments. In this model, investments can be made either now or in a later stage, when information 
on the success of earlier investments is available. Results indicate that, given a total RD&D budget 
constraint, about 60-70% of this budget would be spent in the first period, while 30-40% is reserved for 
the second stage. He finds that generally the rank ordering of technologies does not change much when 
comparing a one-stage and two-stage model. There is, however, a slight impact in that highly 
substitutable programs, such as multiple programs in the same technology category (e.g., solar PV), tend 
to be diversified across time. Thus, in a one-stage model it may be optimal to invest in all CCS programs 
before solar programs, but in the two-stage model it may be optimal to invest in at least one solar 
program in the first stage and wait for at least one CCS program.  

Barron, Djimadoumbaye, and Baker (2014) produce results that are similar to the above three papers, 
but use a simple two-stage decision tree, which is solved using a genetic algorithm. They use the results 
of the solar, CCS and nuclear elicitations from UMass to explore the importance of assumptions about 
grid integration when it comes to RD&D policy. Since solar is intermittent and non-dispatchable, it 
presents some challenges to integrate with the electricity grid.  These challenges are on short-term 
timescales, ranging from minutes, to hours, to seasons. On the other hand, most IAMs are on much 
longer timescales, with time steps every 5-10 years. This makes it a challenge to model grid integration 
issues in IAMs. Thus, these models often use broad simplifications to mimic issues like grid integration 
and intermittency. The paper considered the optimal RD&D portfolio among solar, CCS and nuclear 
under two assumptions about grid integration: (1) the standard assumption of costly grid integration in 
the GCAM model; and (2) no-cost grid integration. Using results from GCAM and implementing them in 
simple optimization models, they find that the importance of grid integration depends on the decision 
framework. If the decision is how to allocate a fixed budget of RD&D, then the grid integration 
assumptions have very little impact on the optimal portfolio. If the decision is how much total dollars to 
spend on RD&D, then the assumptions have a stronger impact, typically leading to larger overall 
expenditures on solar when grid integration costs are assumed away. The message is that the 
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importance of more precise information and modelling of grid integration depends on the problem at 
hand.    

In an overview paper, Baker, Olaleye, and Reis (2015) employ the cost distributions from the expert 
surveys done by FEEM, Harvard and UMass elicitations, plus the overall aggregated distributions, for five 
technologies in a study that compares across decision frameworks. They use a decision-tree framework 
to explicitly incorporate uncertainty about technologies and climate damages, and compare a one-stage 
model with a two-stage model. The paper provides a brief overview of decision frameworks aimed at 
incorporating uncertainty. It then provides an extended numerical example that compares (1) across 
four decision frameworks and (2) four elicitation results – one for each individual team and one for the 
aggregated results. They consider two traditional Bayesian frameworks (a one-stage and a two-stage) 
and two frameworks that incorporate ambiguity aversion (both one-stage). In all frameworks, the key 
near-term decision is over the RD&D investment portfolio. The investment portfolio determines the 
probability distribution over the outcomes of RD&D. Results from the GCAM model are used to calculate 
the cost of abatement, given a stabilization scenario (more precisely a Radiative  
Concentration Pathway,  RCP) and the temperature path. In the traditional frameworks, the objective is 
to minimize three costs: the cost of RD&D plus the cost of abatement plus the cost of climate damages. 
The ambiguity-averse frameworks use Maximin and MiniMax regret objectives. The one-stage 
framework is solved for three different emissions targets of increasing stringency. In the two-stage 
framework the emission target is chosen after the outcomes of RD&D are realized.  

They find that it is not enough to look only at the prospects for technological change, or only at the 
importance of a technology in the economy. Some technologies have great prospects to improve, but 
the interactions in the economy with the other technologies may not make it a good investment. On the 
other hand, some technologies may be very important in the economy, and yet the prospects for 
technological change in comparison to other technologies may make it less interesting. Another 
important result is that there is value in RD&D even in the absence of any climate policy. The models 
showed significant investment in some of the technologies even when emissions were unconstrained, 
particularly when damages were higher. This implies that policymakers do not need to wait for a 
worldwide agreement on reducing emissions to move forward with RD&D investments.  

Similar to McJeon (2012), Baker, Olaleye, and Reis (2015) allows for the comparison of results between a 
one-stage model and a two-stage model. They find that some technologies have more “option value” 
than other technologies. That is, some technologies increase the flexibility to move to different 
emissions pathways in the future. In particular, they find that nuclear has more option value than 
biofuels. Thus, in a world where the stabilization goal may depend on the technologies available, near 
term investments in nuclear preserve more flexibility than investments in biofuels.  

Finally, they consider two non-Bayesian ambiguity averse frameworks. They find that these frameworks, 
both of which model maximum ambiguity-aversion, result in very different optimal portfolios. The 
MaxiMin avoids ambiguity by reducing investments in the technologies with the most disagreement 
across teams. The MiniMax regret decision rule avoids ambiguity and results in an increase investment 
into the technologies that have the most potential. Overall, they conclude that frameworks such as 
these may be best used to indicate where more research into the prospects for the technologies is most 
valuable (i.e. where there is the most disagreement).  

Santen and Anadón (2014) and Santen and Anadón (2016) use a purpose-built model for both an 
economic value and decision analysis. They focus on one technology, but include multiple stages of 
uncertainty and learning. They use the emerging method of Approximate Dynamic Programming  to 
solve their model. They present a new comprehensive framework for studying the socially optimal level 
of generating capacity and public RD&D investments in the electricity sector under decision-dependent 
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RD&D uncertainty and learning.  This paper constructs a bottom-up stochastic electricity generation 
capacity expansion model with uncertain endogenous RD&D-based technical change, focusing on the 
solar PV RD&D elicitation data from Harvard.  The problem is formulated as a four-stage decision under 
uncertainty problem, representing the opportunities for policymakers to learn and adapt to new 
information between decision stages.  The value of the model is demonstrated by showing that when 
uncertainty and learning features are omitted, as is often done in practice, the deployment versus 
development investment strategy can be considerably different from the optimal solution.  Similar to 
the work above, Santen and Anadón show that under a carbon constraint the optimal investment 
strategy includes lower solar PV RD&D spending upfront and more RD&D spending later ( sometimes 
higher spending overall) when compared to a strategy under perfect foresight about RD&D outcomes, or 
based on single-shot decision-making under uncertainty without learning.  The paper also shows that 
when uncertainty is considered without learning, new solar PV capacity investments are depressed.  
Overall, the paper shows that it is possible to unify several realistic features of the deployment and 
development problem into one framework, using continuous RD&D levels and probability distributions.  

Marangoni, de Maere, and Bosetti (2015) also employ an Approximate Dynamic Programming, using 
FEEM expert elicitations and the WITCH model to determine the welfare associated with different 
technology costs combination. The main result is that investment in batteries dominates the RD&D 
portfolio. The use of batteries in the transportation sector means that the benefits of lower costs of 
batteries are large, which more than compensates for the fact that probability of success is lower than in 
other technologies. 

5.3 Summary 

Given informational constraints and the different strengths and weaknesses of the various paradigms, 
there is no single approach that is best in all cases. In fact, in most real world problems with their 
considerable complexity, it is probably best to use a variety of approaches.  From this review, we can 
identify tradeoffs between the approaches and the types of insights that can be gained from each of 
them.    

There is a tradeoff between the number of technologies that can be considered and the decision-making 
complexity that can be modelled. For example, Chan and Anadón (2015) consider uncertainty about the 
future of 25 technologies for six R&D technology programs using Monte-Carlo methods, while Santen 
and Anadón (2016) consider a multi-stage model for a continuous range of R&D investments for one 
single technology. More generally, the sensitivity and uncertainty analysis papers reviewed in Section 5.1 
provide insights that are based on detailed modelling of the technologies, multiple uncertainties and 
multiple policies. The papers in Section 5.2 tend to have simpler representations of these aspects, but 
provide decision-relevant insights that cannot be drawn from the other frameworks. 

Three of the papers discussed here show the value of explicitly modelling multiple stages  (Baker, 
Olaleye, and Reis 2015; McJeon 2012; Santen and Anadón 2016). These papers all compare simple one-
stage models with multi-stage models and provide insights that cannot be found in one stage models. In 
particular, some technologies and investment strategies have “option value” because they provide 
future flexibility to react to what is learned.  

All the papers presented above explicitly illustrate the importance of considering both technological 
prospects and economic interactions when choosing an energy technology R&D portfolio. It is, 
therefore, not enough to simply look at the results in Section 2 of this report and choose R&D 
investments based on the technologies that have the most potential for technological change. How 
these technologies compete in the economy and interact with climate policy is also crucial. On the other 
hand, it is not enough to simply review the results from IAMs. Even though a technology may be very 
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important in an economy (such as nuclear, say, in the GCAM model), it may not be the best investment 
in a portfolio – the efficacy of the R&D investments must also be taken into consideration. Economic 
theory does indeed say that it may be important to consider both parts of this equation (i.e., the 
technological potential and the economic interactions). In reality, however, it is often true that one side 
of the equation swamps the other in importance. The work presented in this report confirms that in the 
case of energy technology R&D, both pieces are of prime importance. This is relevant to policy because 
there has been a tendency for policymakers to look at one or the other without integrating them. The 
work herein underlines the importance of undertaking an explicit R&D portfolio analysis.  
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6. Future research needs and conclusions 

There are a number of existing expert elicitation studies on climate-change mitigation energy 
technologies. The probability distributions and other information gleaned from these studies can play a 
crucial part in both the design of RD&D portfolios and the development of better projections of future 
emissions. Our objective was to provide a comprehensive overview of the existing elicitation data and its 
uses. We reported these data both in their original form and in a modified form that allowed us to 
compare multiple studies, and we reviewed the literature on modelling and decision-making that has 
employed the data. As expert surveys differ in many features, we made key harmonizing assumptions 
(discussed in detail in Appendix C to this document). We hope that this research will compel future 
researchers to extend our dataset to other technologies and studies, and combine existing and future 
data with models that can provide decision-relevant insights. 

Here we summarize the key lessons learned by pulling together the range of studies in this report.  We 
start by emphasizing the most important gaps in the literature, which should shape future research. 
First, very little research has been done which considers drastic reductions in current RD&D spending. 
Indeed, in most of the studies reviewed herein the current level of RD&D is taken to be the lowest level 
possible. There are four exceptions – Jenni, Baker, and Nemet (2013); Fiorese et al. (2014); Ricci et al. 
(2014); and NRC (2007) – which considered no or diminished R&D funding.  In times of tight 
governmental budgets, however, it may be important to assess what would happen if entire RD&D 
programs were scaled down.  

Second, as the geography of experts appears to be a key driver of elicited costs, it is important to extend 
expert elicitation to emerging economies that are now moving (in some cases for a long time) at the 
frontier of innovation for many of these technologies.  

Third, this review of elicitation studies shows that some technology areas, such as utility-scale energy 
storage, wind, vehicles, gas turbines, geothermal and energy efficiency technologies, have been the 
subject of few (or no) publicly available expert elicitations. As a result, our ability to analyze these 
technologies and determine how they fit into energy RD&D portfolios is limited.  

Overall, the expert elicitation data show some regularities. Most simply, experts largely believe that 
increased public R&D investments will result in reductions in future technology costs by 2030, although 
possibly with diminishing marginal returns. The results also support the notion that RD&D investments 
(as defined in these studies) will often not reduce the uncertainty surrounding the costs of future 
technology;  rather, uncertainty is likely to stay the same or increase with larger investment in RD&D as 
the range of technological possibilities expands.  

By looking across different studies and various technologies, there is no single technology that 
consistently stands out from the others in terms of largest cost reductions in percentage terms that 
might be induced by R&D. Although no systematic pattern emerges, data from Section 2 points to solar 
PV as the technology that is consistently (across studies and experts) expected to enjoy significant cost 
reductions.  CCS is also expected to improve significantly, albeit with a greater dispersion. Nuclear 
power, on the other hand, is associated with some of the largest cost decreases in some elicitations 
(UMass), as well as some of the lowest cost decreases in others (e.g., FEEM and Harvard).  This finding, 
corroborated by the meta-analysis presented in section 4, brings to attention the fact that differences in 
elicitation design (including choice of experts, mode of elicitation and format of the questions) may lead 
to differences in estimates.  

Some of the studies covered in this report have also asked more qualitative questions using a range of 
visual and ranking tools. These provide technology-specific insights that go beyond future cost and 
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performance, and can provide greater insights on the uncertainty surrounding the costs estimates. For 
example, these types of questions can help identify promising new fields of energy technology research 
or describe non-technology barriers that may hamper the diffusion of a technology. Moreover, a great 
deal of insight can be gained from the expert’s discussions that support quantitative estimates. For 
example, a common finding in the studies was that experts expressed the importance of funding areas 
of research that are not traditionally included in programs (e.g., in the case of Harvard bioenergy and 
Harvard-FEEM nuclear surveys).  

A review of decision frameworks confirms that technologies with the greatest potential for technological 
change are not necessarily the best R&D investments. A large decrease in cost does not necessarily 
result in the largest societal benefits. This is an important insight, since coupling expert elicitation data 
with modelling frameworks is quite a challenging and resource-intensive process. These results imply 
that, nevertheless, they are well worth the effort. Combining elicitations and models allows us to 
understand the range of future outcomes and how these depend on R&D.  It also allows us to identify 
which near term alternatives most increase our flexibility to act in the future, and it indicates which 
technologies are (overall) the most important to support, considering both the technology and the 
economy.  

One outcome of this comprehensive analysis is to shed light on how to perform the next generation of 
expert elicitations. The energy technology expert elicitations covered herein  confirm the importance of 
fully understanding the technological literature and engaging technical experts during the early stages of 
protocol design. 

Moreover, this report confirms that study design matters, and sheds new light on some key questions. A 
question that has been gaining interest lately is the impact of the elicitation mode – traditional F2F or 
remote (often online). Some of the studies considered how elicitation mode impacts the range of 
uncertainty expressed by experts.  While, all else being equal, a smaller range of uncertainty is more 
informative than a larger range of uncertainty, it is well-known that experts tend to be overconfident, 
expressing ranges of uncertainty that are too small. The initial results from two of the meta-analyses 
(Verdolini et al. 2015; Nemet, Anadón, and Verdolini 2015) are consistent with the idea that in-person 
elicitations may be associated with greater uncertainty ranges.  

A second aspect of study design centres on the set of experts that participates in the study. It appears 
that experts as grouped by characteristic have a tendency to answer similarly: experts from industry are 
similar and different from experts in academia, and Europeans may be different from Americans. 
However, the size and direction of such impacts varies by technology. For example, the meta-analysis of 
solar and nuclear elicitations indicated different relationships (or lack thereof) between whether experts 
were from the EU or the US, or whether experts were from the private sector, academia or a public 
research organization, and the optimism or pessimism regarding future technology cost and 
performance. When it came to nuclear, public sector and industry experts expected higher costs than 
academics, and US experts were more optimistic than their EU counterparts. On the other hand, when it 
came to solar, central estimates were unaffected by expert affiliation type or nationality, but there were 
indications that EU experts were more optimistic about breakthroughs. Other studies had similar, albeit 
mixed results. The main takeaway from these findings is that it is essential to represent a variety of 
affiliations, expertise and nationalities to truly account for uncertainty.  

Future elicitations could experimentally test the ability of experts to calibrate different R&D budgets and 
systematically test the impact of asking experts about aggregated metrics (e.g., LCOE) versus technology 
components (Anadón et al. 2015). Most generally, this work indicates that it may be quite valuable to 
perform randomized, controlled studies to better understand the impacts of elicitation study design. The 
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advantages of using structured and repeated online surveys could be large, but this would require 
research on how to design these online tools to minimize biases. 

Finally, putting all of this work together, the range of results from expert elicitations and from the 
modelling and decision frameworks  indicates that there is considerable remaining uncertainty regarding 
the future of energy technologies and disagreement regarding the extent of the impact of R&D. 
Therefore, care should be taken when crafting near-term policy to focus on increasing flexibility by 
investing in a range of technologies. 

 

 

 



The Future of Energy Technologies: An Overview of Expert Elicitations 

75 

 

References  

Abdulla, A., I. L. Azevedo, and M. G. Morgan. 2013. “Expert Assessments of the Cost of Light Water 
Small Modular Reactors.” Proceedings of the National Academy of Sciences 110 (24): 9686–
91. 

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous. 2012. "The Environment and Directed 
Technical Change." American Economic Review, 102(1): 131-66.  

Ahn, J., and M. J. Apted, eds. 2010. Geological Repository Systems for Safe Disposal of Spent Nuclear 
Fuels and Radioactive Waste. Woodhead Publishing Limited.  

Anadón, L. D., E. Baker, V. Bosetti, and L. Aleluia Reis. 2015. “Too Early to Pick Winners: 
Disagreement across Experts Implies the Need to Diversify R&D Investment.” Submitted. 

Anadón, L. D., V. Bosetti, M. Bunn, M. Catenacci, and A. Lee. 2012. “Expert Judgments about RD&D 
and the Future of Nuclear Energy.” Environmental Science & Technology 46 (21): 11497–504. 

Anadón, L. D., V. Bosetti, M. G. Bunn, M. Catenacci, and A. Lee. 2011. “International Workshop on 
Research, Development, and Demonstration to Enhance the Role of Nuclear Energy in 
Meeting Climate and Energy Challenges.” Retrieved from 
http://dash.harvard.edu/handle/1/8160715. 

Anadón, L. D., M. G. Bunn, M. Chan, C. A. Jones, R. Kempener, G. Chan, A. Lee, N. J. Logar, and V. 
Narayanamurti. 2011. “Transforming US Energy Innovation.” Retrieved from 
http://dash.harvard.edu/handle/1/10594301. 

Anadón, L. D., M. G. Bunn, and V. Narayanamurti. 2014. Transforming US Energy Innovation. UK: 
Cambridge University Press. Retrieved from 
http://www.cambridge.org/US/academic/subjects/earth-and-environmental-
science/environmental-policy-economics-and-law/transforming-us-energy-innovation. 

Anadón, L. D., G. Nemet, and E. Verdolini. 2013. “The Future Costs of Nuclear Power Using Multiple 
Expert Elicitations: Effects of RD&D and Elicitation Design.” Environmental Research Letters 8 
(3): 034020. 

Anderson, B., E. Borgonovo, M. Galeotti, and R. Roson. 2014. “Uncertainty in Climate Change 
Modeling: Can Global Sensitivity Analysis Be of Help?” Risk Analysis 34 (2): 271–93. 

Baker, E.. 2006. “Increasing Risk and Increasing Informativeness: Equivalence Theorems.” Operations 
Research 54 (1): 26–36. 

Baker, E., V. Bosetti, L. D. Anadón, M. Henrion, and L. Aleluia Reis. 2015. “Future Costs of Key Low-
Carbon Energy Technologies: Harmonization and Aggregation of Energy Technology Expert 
Elicitation Data.” Energy Policy 80: 219-232. 

Baker, E., V. Bosetti, K. E. Jenni, and E. Claire Ricci. 2014. “Facing the Experts: Survey Mode and 
Expert Elicitation.” Nota di Lavoro 1.2014, Milan, Italy: Fondazione Eni Enrico Mattei/. 

Baker, E., H. Chon, and J. Keisler. 2009a. “Advanced Solar R&D: Combining Economic Analysis with 
Expert Elicitations to Inform Climate Policy.” Energy Economics 31: S37–49. 

———. 2009b. “Carbon Capture and Storage: Combining Economic Analysis with Expert Elicitations 
to Inform Climate Policy.” Climatic Change 96 (3): 379–408. 

———. 2010. “Battery Technology for Electric and Hybrid Vehicles: Expert Views about Prospects for 
Advancement.” Technological Forecasting and Social Change 77 (7): 1139–46. 

Baker, E., H. Chon, and J. M. Keisler. 2008a. “Advanced Nuclear Power: Combining Economic Analysis 
with Expert Elicitations to Inform Climate Policy.” Retrieved from 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1407048. 

Baker, E., H. Chon, and J. Keisler. 2008b. “Electricity from Biomass: Combining Economic Analysis 
with Expert Elicitation Data to Inform Climate Policy.” Working Paper. University of 
Massachusetts, Amherst. 

Baker, E., L. Clarke, and E. Shittu. 2008. “Technical Change and the Marginal Cost of Abatement.” 
Energy Economics 30 (6): 2799–2816. 



GGKP Working Paper 01|2016 

76 

 

Baker, E., and J. M. Keisler. 2011. “Cellulosic Biofuels: Expert Views on Prospects for Advancement.” 
Energy 36 (1): 595–605. 

Baker, E., O. Olaleye, and L. Aleluia Reis. 2015. “Decision Frameworks and the Investment in R&D.” 
Energy Policy 80: 275–285  

Baker, E., and S. Solak. 2011. “Climate Change and Optimal Energy Technology R&D Policy.” 
European Journal of Operational Research 213 (2): 442–54. 

———. 2014. “Management of Energy Technology for Sustainability: How to Fund Energy 
Technology Research and Development.” Production and Operations Management 23 (3): 
348–65. 

Barron, R., N. Djimadoumbaye, and E. Baker. 2014. “How Grid Integration Costs Impact the Optimal 
R&D Portfolio into Electricity Supply Technologies in the Face of Climate Change.” 
Sustainable Energy Technologies and Assessments 7 (September): 22–29.  

Barron, R., and H. C. McJeon. 2015. “The Differential Impact of Low-Carbon Technologies on Climate 
Change Mitigation Cost under a Range of Socioeconomic and Climate Policy Scenarios.” 
Energy Policy 80: 264–74. 

Bellman, R. 1956. “Dynamic Programming and Lagrange Multipliers.” Proceedings of the National 
Academy of Sciences of the United States of America 42 (10): 767. 

Bettencourt, L. M. A., J. E. Trancik, and J. Kaur. 2013. “Determinants of the Pace of Global Innovation 
in Energy Technologies.” PloS One 8 (10): e67864. 

Birge, J. R., and F. Louveaux. 2011. Introduction to Stochastic Programming. Springer Science & 
Business Media. 

Bistline, J. E. 2013. “Energy Technology Expert Elicitations: An Application to Natural Gas Turbine 
Efficiencies.” Technological Forecasting and Social Change 86: 177-187.  

BNEF. 2012. “Bloomberg New Energy Finance Database.” 
BNEF, and Frankfurt School/UNEP Center. 2014. “Global Trends in Renewable Energy Investments 

2014.” Frankfurt School of Finance & Management gGmbH 2014. Retrieved from http://fs-
unep-centre.org/system/files/globaltrendsreport2014.pdf 

Bolger, F., and G.  Rowe. 2015. “The Aggregation of Expert Judgment: Do Good Things Come to 
Those Who Weight?” Risk Analysis 35(1): 5–11.  

Bosetti V., C. Carraro, M. Galeotti, E. Massetti and M. Tavoni, (2006), "WITCH: A World Induced 

Technical Change Hybrid Model", The Energy Journal, Special Issue. Hybrid Modeling of 

Energy-Environment Policies: Reconciling Bottom-up and Top-down, 13-38. 

Bosetti, V., and M. Catenacci, eds. 2014. Innovation under Uncertainty: The Future of Carbon-Free 

Energy Technologies. Series on Economics, the Environment and Sustainable Development. 

Edward Elgar. 

Bosetti, V., M. Catenacci, G. Fiorese, and E. Verdolini. 2012. “The Future Prospect of PV and CSP 

Solar Technologies: An Expert Elicitation Survey.” Energy Policy 49: 308–17. 

Bosetti, V., G. Marangoni, E. Borgonovo, L. D. Anadón, R.Barron, H. C. McJeon, S. Politis, and P. 
Friley. 2015. “Sensitivity to Energy Technology Costs: A Multi-Model Comparison Analysis.” 
Energy Policy 80: 244–63. 

Bosetti, V., and E. C. Ricci. 2015. “Future Prospects of Carbon Capture Technologies: An Expert 
Elicitation.” Retrieved from: 
http://www.internationalenergyworkshop.org/docs/IEW%202013_1A2paperRicci.pdf. 

Bosetti, V., M. Catenacci, G. Fiorese, and E. Verdolini. 2011. ICARUS Survey on the Current State and 
Future Development of Electric Drive Vehicles–Short Technical Report. FEEM. Retrieved from 
http://www.icarus-project.org/?cat=5 

BP. 2013. “Statistical Review of World Energy.” Retrieved from 
http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-
world-energy/statistical-review-downloads.html. 



The Future of Energy Technologies: An Overview of Expert Elicitations 

77 

 

Budnitz, R. J. et al. 1997. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on 
Uncertainty and Use of Experts. Vol. 1. US Nuclear Regulatory Commission Washington, DC. 
Retrieved from 
http://205.254.131.150/sites/default/files/nnsa/multiplefiles2/SSHAC%201997%20NUREG%
20CR-6372.pdf. 

Capen, E.C. 1976. “The Difficulty of Assessing Uncertainty.” Journal of Petroleum Technology 28 (8): 
843–50. 

Catenacci, M., E. Verdolini, V. Bosetti, and G. Fiorese. 2013. “Going Electric: Expert Survey on the 
Future of Battery Technologies for Electric Vehicles.” Energy Policy 61: 403–13. 

Chan, G., and L. D. Anadón. 2015. “Improving Decision Making for Public RD&D Investments in 
Energy.” MIMEO. 

Chan, G., L. D. Anadón, M. Chan, and A. Lee. 2011. “Expert Elicitation of Cost, Performance, and 
RD&D Budgets for Coal Power with CCS.” Energy Procedia 4: 2685–92. 

Chase, J. 2015. “Levelised Costs of Electricity – PV.” presented at the Bloomberg New Energy 
Finance. Retrieved from 
https://www.iea.org/media/workshops/2014/solarelectricity/bnef2lcoeofpv.pdf. 

Chung, T. S., D. Patiño-Echeverri, and T. L. Johnson. 2011. “Expert Assessments of Retrofitting Coal-
Fired Power Plants with Carbon Dioxide Capture Technologies.” Energy Policy 39 (9): 5609–
20. 

Clemen, R. T. 2008. “Comment on Cooke’s Classical Method.” Reliability Engineering & System Safety 
93 (5): 760–65. 

Clemen, R. T., and T. Reilly. 2001. Making Hard Decisions with Decision Tools. CA, Duxbury: Pacific 
Grove. 

Clemen, R. T., and R. L. Winkler. 2007. “Aggregating Probability Distributions.” in: W. Edwards, R. 
Miles, & D. von Winterfeldt (Eds.) Advances in Decision Analysis . pp. 154-176. Cambridge , 
UK : Cambridge University Press. 

Clemen, R. T., and R. L. Winkler. 1985. “Limits for the Precision and Value of Information from 
Dependent Sources.” Operations Research 33 (2): 427–42. 

———. 1999. “Combining Probability Distributions from Experts in Risk Analysis.” Risk Analysis 19 
(2): 187–203. 

Cooke, R. M., A. M. Wilson, J. T. Tuomisto, O. Morales, Tainio, M., and Evans, J. S. 2007. “A 
Probabilistic Characterization of the Relationship between Fine Particulate Matter and 
Mortality: Elicitation of European Experts.” Environmental Science and Technology 41 (18): 
6598–6605. 

Cooke, R. M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford 
University Press. 

Cooke, R. M., and L. H. J. Goossens. 2000. “Procedures Guide for Structural Expert Judgement in 
Accident Consequence Modelling.” Radiation Protection Dosimetry 90 (3): 303–9. 

Cooke, R. M., and L. Goossens. 2008. “TU Delft Expert Judgment Data Base.” Reliability Engineering 
& System Safety 93 (5): 657–74. 

Crost, B., and C.P. Traeger. 2013. “Optimal Climate Policy: Uncertainty versus Monte Carlo.” 
Economics Letters 120 (3): 552–58. 

Curtright, A. E., M. G. Morgan, and D. W. Keith. 2008. “Expert Assessments of Future Photovoltaic 
Technologies.” Environmental Science & Technology 42 (24): 9031–38. 

Dalal, S., D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams. 2011. “ExpertLens: A System for 
Eliciting Opinions from a Large Pool of Non-Collocated Experts with Diverse Knowledge.” 
Technological Forecasting and Social Change 78 (8): 1426–44. 

Dewispelare, A. R., L. T. Herren, and R. T. Clemen. 1995. “The Use of Probability Elicitation in the 
High-Level Nuclear Waste Regulation Program.” International Journal of Forecasting 11 (1): 
5–24. 



GGKP Working Paper 01|2016 

78 

 

Dixit, A. K., and R. S. Pindyck. 1994. Investments Under Uncertainty. Princeton University Press. 
DOE. 2014. “FY 2015 Budget Justification.” U.S. Department of Energy, Washington DC. 
EC, European Commission. 2015. “Energy Technologies and Innovation [COM(2013) 253].” Retrieved 

from https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-
8#q=EC%2C+European+Commission%2C+(2008)%2C+Energy+Technologies+and+Innovation
+%5BCOM(2013)+253%5D%2C. 

Edmonds, J., J. Clarke, J. Dooley, S. H. Kim, and S. J. Smith. 2004. “Stabilization of CO 2 in a B2 World: 
Insights on the Roles of Carbon Capture and Disposal, Hydrogen, and Transportation 
Technologies.” Energy Economics 26 (4): 517–37. 

Edwards, W., Miles, R., and D. von Winterfeldt. 2007. Advances in Decision Analysis: From 
Foundations to Applications. Cambridge University Press.  

Ferrell, W. R. 1985. “Combining Individual Judgments.” In G. Wright, ed. Behavioral Decision Making, 
111–45. Springer. 

Fiorese, G., M. Catenacci, V. Bosetti, and E. Verdolini. 2014. “The Power of Biomass: Experts Disclose 
the Potential for Success of Bioenergy Technologies.” Energy Policy 65: 94–114. 

Fiorese, G., M. Catenacci, E. Verdolini, and V. Bosetti. 2013. “Advanced Biofuels: Future Perspectives 
from an Expert Elicitation Survey.” Energy Policy 56: 293–311. 

Gallagher, K. S., and L. D. Anadón. 2014. “DOE Budget Authority for Energy Research, Development, 
& Demonstration Database.” Energy Technology Innovation Policy Research Group, Belfer 
Center for Science and International Affairs, Harvard Kennedy School, March 2014. 

Gillenwater, M.. 2013. “Probabilistic Decision Model of Wind Power Investment and Influence of 
Green Power Market.” Energy Policy 63: 1111–25. 

Hammond, J. S., R. L. Keeney, and H. Raiffa. 1999. Smart Choices: A Practical Guide to Making Better 
Decisions. Vol. 226. Harvard Business Press. 

Holdren, J. P., and S. F. Baldwin. 2001. “THE PCAST ENERGY STUDIES: Toward a National Consensus 
on Energy Research, Development, Demonstration, and Deployment Policy.” Annual Review 
of Energy and the Environment 26 (1): 391–434.  

Hora, S. C., B. R. Fransen, N. Hawkins, and I. Susel. 2013. “Median Aggregation of Distribution 
Functions.” Decision Analysis 10 (4): 279–91. 

Hora, S. C., and D. Von Winterfeldt. 1997. “Nuclear Waste and Future Societies: A Look into the Deep 
Future.” Technological Forecasting and Social Change 56 (2): 155–70. 

Howard, R.  A. 1988. “Decision Analysis: Practice and Promise.” Management Science 34 (6): 679–95. 
Howard, R. A., J. E. Matheson, and D. W. North. 1972. “The Decision to Seed Hurricanes.” Science 

176 (4040): 1191–1202. 
IEA. 2015. “Energy Technology RD&D Budgets: Beyond 2020 Documentation.” www.iea.org. 
Iman, R. L., and W. J. Conover. 1982. “A Distribution-Free Approach to Inducing Rank Correlation 

among Input Variables.” Communications in Statistics-Simulation and Computation 11 (3): 
311–34. 

Inman, M. 2012. “How Low Will Photovoltaic Prices Go? An Expert Discussion.” Nearzero.  Retrieved 
from http://www.nearzero.org/reports/pv-learning. 

InterAcademy Council. 2010. “Climate Change Assessments, Review of the Processes & Procedures 
of the IPCC.” Retrieved from https://www.ipcc.ch/pdf/IAC_report/IAC%20Report.pdf 

Jaffe, A. B., R. G. Newell, and R. N. Stavins. 2005. “A Tale of Two Market Failures: Technology and 
Environmental Policy.” Ecological Economics 54 (2): 164–74. 

James, A., S. Low Choy, and K. Mengersen. 2010. “Elicitator: An Expert Elicitation Tool for Regression 
in Ecology.” Environmental Modelling & Software 25 (1): 129–45. 

Jenni, K. E., E. Baker, and G. F. Nemet. 2013. “Expert Elicitations of Energy Penalties for Carbon 
Capture Technologies.” International Journal of Greenhouse Gas Control 12: 136–45. 



The Future of Energy Technologies: An Overview of Expert Elicitations 

79 

 

Juslin, P., P. Wennerholm, and H. Olsson. 1999. “Format Dependence in Subjective Probability 
Calibration.” Journal of Experimental Psychology: Learning, Memory, and Cognition 25 (4): 
1038. 

Kahneman, D. 2011. Thinking, Fast and Slow. Macmillan. 
Kahneman, D., and D. Lavallo. 1993. “Timid Choices and Bold Forecasts: A Cognitive Perspective on 

Risk Taking.” Management Science 39: 17-31. 
Keeney, R.L., and D. V. Winterfeld. 1991. “Eliciting Probabilities from Experts in Complex Technical 

Problems.” Transactions on Engineering Management 38: 191–201. 
Kempener, R., L. D. Anadón, and J. Condor. 2010. Governmental Energy Innovation Investments, 

Policies, and Institutions in the Major Emerging Economies: Brazil, Russia, India, Mexico, 
China, and South Africa. Harvard Kennedy School, Cambridge, MA. Retrieved from 
http://belfercenter.hks.harvard.edu/publication/20517/governmental_energy_innovation_i
nvestments_policies_and_institutions_in_the_major_emerging_economies.html. 

Kotra, J. P., M. P. Lee, N. A. Eisenberg, and A. R. DeWispelare. 1996. “Branch Technical Position on 
the Use of Expert Elicitation in the High-Level Radioactive Waste Program.” Nuclear 
Regulatory Commission, Washington, DC (United States). Div. of Waste Management. 
Funding organisation: Nuclear Regulatory Commission, Washington, DC (United States). 
Retrieved from 
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/038/28038065.pdf. 

Krayer von Krauss, M. P., El. A. Casman, and M. J. Small. 2004. “Elicitation of Expert Judgments of 
Uncertainty in the Risk Assessment of Herbicide-Tolerant Oilseed Crops.” Risk Analysis 24 
(6): 1515–27. 

Lichtendahl, K. C. Jr, Y. Grushka-Cockayne, and R. L. Winkler. 2013. “Is It Better to Average 
Probabilities or Quantiles?” Management Science 59 (7): 1594–1611. 

Lin, S., and C. Cheng. 2009. “The Reliability of Aggregated Probability Judgments Obtained through 
Cooke’s Classical Model.” Journal of Modelling in Management 4 (2): 149–61. 

Marangoni, G., G. de Maere, and V. Bosetti. 2015. “Optimal Clean Energy R&D Investments Under 
Uncertainty An Approximate Dynamic Programming Approach.” In Preparation. 

Marquard, J. L., and S. M. Robinson. 2008. “Decision Modeling and Behavior in Complex and 
Uncertain Environments.” In Reducing Perceptual and Cognitive Challenges in Making 
Decisions with Models. Springer New York. 

McJeon, Haewon. 2012. “ENERGY TECHNOLOGY DEVELOPMENT AND CLIMATE CHANGE 
MITIGATION.” PhD Dissertation, University of Maryland, College Park, Maryland. 

Meyer, M. A., and J. M. Booker. 1991. Eliciting and Analyzing Expert Judgment: A Practical Guide. 
Vol. 7. ASA-SIAM Series on Statistics and Applied Mathematics.  

Morgan, M. G. 2014. “Use (and Abuse) of Expert Elicitation in Support of Decision Making for Public 
Policy.” Proceedings of the National Academy of Sciences 111 (20): 7176–84. 

———. 2015. “Our Knowledge of the World Is Often Not Simple: Policymakers Should Not Duck That 
Fact, But Should Deal with It: Knowledge Is Often Not Simple.” Risk Analysis 35 (1): 19–20. 
doi:10.1111/risa.12306. 

Morgan, M. G., and M. Henrion. 1990. “Uncertainty: A Guide to Dealing with Uncertainty in 
Quantitative Risk and Policy Analysis Cambridge University Press.” New York, New York, USA. 

Nagy, B., J. D. Farmer, Q. M. Bui, and J. E. Trancik. 2013. “Statistical Basis for Predicting Technological 
Progress.” PloS One 8 (2): e52669. 

Nemet, G. F., L. D. Anadón, and E. Verdolini. 2015. “Expert Selection and Elicitation Design Affect 
Confidence in Probabilistic Judgments about Future Technologies.” Submitted. 

Nemet, G. F., and E. Baker. 2009. “Demand Subsidies versus R&D: Comparing the Uncertain Impacts 
of Policy on a Pre-Commercial Low-Carbon Energy Technology.” Energy Journal 30 (4): 49. 

Nemet, G. F., E. Baker, R. Barron, and S. Harms. 2015. “Characterizing the Effects of Policy 
Instruments on the Future Costs of Carbon Capture for Coal Power Plants.” MIMEO. 



GGKP Working Paper 01|2016 

80 

 

Nemet, G. F., E Baker, and K. E. Jenni. 2013. “Modeling the Future Costs of Carbon Capture Using 
Experts’ Elicited Probabilities under Policy Scenarios.” Energy 56: 218–28. 

Nordhaus, W. D. 1994. “Expert Opinion on Climatic Change.” American Scientist, 45–51.  Retrieved 
from http://stephenschneider.stanford.edu/Publications/PDF_Papers/NordhausSM.pdf 

North, D. W., F. Offsend, and C. Smart. 1975. “Planning Wildfire Protection for the Santa Monica 
Mountains.” Fire J 69. 

NRC. 2007. “Prospective Evaluation of Applied Energy Research and Development at DOE (phase 
Two).” National Academies Press, Washington D.C., United States: National Research 
Council. 

NSB, National Science Board. 2014. “Science and Engineering Indicators Digest.” 
O’Hagan, A., C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J. Jenkinson, J. E. Oakley, and 

T. Rakow. 2006. Uncertain Judgements: Eliciting Experts’ Probabilities. John Wiley & Sons.  
Olaleye, O., and E. Baker. 2015. “Large Scale Scenario Analysis of Future Low Carbon Energy 

Options.” Energy Economics 49: 203–216.  
Peerenboom, J. P., W. A. Buehring, and T. W. Joseph. 1989. “OR Practice—Selecting a Portfolio of 

Environmental Programs for a Synthetic Fuels Facility.” Operations Research 37 (5): 689–99. 
Phillips, L. D. 1999. Group Elicitation of Probability Distributions: Are Many Heads Better than One? 

Kluwer Academic Publishers. 
Powell, W. B. 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Vol. 

703. John Wiley & Sons.. 
Raiffa, H. 1968. Decision Analysis: Introductory Lectures on Choices under Uncertainty. Addison-

Wesley. Oxford. 
Rao, A. B., E. S. Rubin, D. W. Keith, and M. G. Morgan. 2006. “Evaluation of Potential Cost Reductions 

from Improved Amine-Based CO< Sub> 2</sub> Capture Systems.” Energy Policy 34 (18): 
3765–72. 

Ricci, E C., V. Bosetti, E. Baker, and K. E. Jenni. 2014. “From Expert Elicitations to Integrated 
Assessment: Future Prospects of Carbon Capture Technologies.” FEEM Nota di Lavoro 
2014.044 

Rodríguez, M. C., I. Haščič, N. Johnstone, J. Silva, and A. Ferey. 2015. “Renewable Energy Policies and 
Private Sector Investment: Evidence from Financial Microdata.” Environmental and Resource 
Economics 62 (1): 163–88.  

Santen, N., and L. D. Anadón. 2014. “Electricity Technology Investments under Solar RD&D 
Uncertainty: How Interim Learning and Adaptation Affect the Optimal Decision Strategy.” 
Discussion Paper 2014-10, Energy Technology Innovation Policy Research Group, Belfer 
Center for Science and International Affairs, Harvard Kennedy School. 

——— 2016. “Balancing solar PV deployment and RD&D: A comprehensive framework for managing 
innovation uncertainty in electricity technology investment planning.” Renewable & 
Sustainable Energy Reviews. Accepted. 

Savage, S. 2002. “The Flaw of Averages.” Harvard Business Review 4. Retrieved from 
http://www.mcppremium.com/pdf/Papers/FlawofAverages_article.pdf. 

Shearer, C., J. Bistline, M. Inman, and S. J. Davis. 2014. “The Effect of Natural Gas Supply on US 
Renewable Energy and CO2 Emissions.” Environmental Research Letters 9 (9): 094008. 

Spaccasassi, C., and L. Deleris. 2011. “A Web-Based Tool for Expert Elicitation in Distributed Teams.” 
In Proceedings of the 8th Bayesian Modelling Applications Workshop of UAI. Vol. 2011. 
Citeseer. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.3602&rep=rep1&type=pdf#
page=128. 

Speirs-Bridge, A., F. Fidler, M. McBride, L. Flander, G. Cumming, and M. Burgman. 2010. “Reducing 
Overconfidence in the Interval Judgments of Experts.” Risk Analysis 30 (3): 512–23. 



The Future of Energy Technologies: An Overview of Expert Elicitations 

81 

 

Spetzler, C. S., and C. S. Stael Von Holstein. 1975. “Probability Encoding in Decision Analysis.” 
Management Science 22: 340–58. 

Spieglhalter, D., M. Pearson, and I. Short. 2011. “Visualizing Uncertainty About the Future.” Science 
333 (6048): 1393–1400. 

Tversky, A., and D. Kahneman. 1974. “Judgment under Uncertainty: Heuristics and Biases.” Science 
185 (4157): 1124–31. 

US EPA, US Environmental Protection Agency. 2015. “Expert Elicitation Task Force White Paper.” 
Retrieved from https://www.google.com/webhp?sourceid=chrome-
instant&ion=1&espv=2&ie=UTF-
8#q=US+Environmental+Protection+Agency+(2011)+Expert+elicitation+task+force+white+pa
per. 

Usher, W., and N. Strachan. 2013. “An Expert Elicitation of Climate, Energy and Economic 
Uncertainties.” Energy Policy 61: 811–21. 

Varian, Hal. 1992. Microeconomic Analysis. 3rd ed. New York: Norton. 
Verdolini, E., L. D. Anadón, G. F. Nemet, and J. Lu. 2015. “The Effects of Expert Selection, Elicitation 

Design and RD&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics.” 
Energy Policy 80: 233-243. 

Walls, L., and J. Quigley. 1991. “Building Prior Distributions to Support Bayesian Reliability Growth 
Modelling Using Expert Judgement.” Reliability Engineering and System Safety 74 (2): 117–
28. 

Webster, M., N. Santen, and P. Parpas. 2012. “An Approximate Dynamic Programming Framework 
for Modeling Global Climate Policy under Decision-Dependent Uncertainty.” Computational 
Management Science 9 (3): 339–62. 

Weyant, J.P. 2004. “Introduction and Overview.” Energy Economics 26 (4): 501–15. 
Wiesenthal, T., P. Dowling, J. Morbee, C. Thiel, B. Schade, P. Russ, S. Simoes, et al. 2012. “Technology 

Learning Curves for Energy Policy Support.” JRC Scientific and Policy Reports. 
ftp://ftp.jrc.es/users/publications/public/JRC73231.pdf. 

Winkler, R. L. 1967. “The Assessment of Prior Distributions in Bayesian Analysis.” Journal of the 
American Statistical Association 62 (319): 776–800. 



GGKP Working Paper 01|2016 

82 

 

Appendix A: Individual Survey Data 

In all following graphs, when one expert elicited more than one specific sub-technology category, 
the values for that expert were aggregated. The aggregation was carried out taking the minimum of 
the 10th percentile, the median of the 50th percentile and the maximum of the 90th percentile. 

Harmonized surveys  
 
Figure 16: Experts’ results of the bioelectricity surveys per expert and per R&D scenario 

 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 17: Experts’ results of the biofuel surveys per expert and per R&D scenario 

 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 18: Experts’ results of the CCS surveys per expert and per R&D scenario 
 

 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 19: Experts’ results of the nuclear GenIII/III+ surveys per expert and per R&D scenario 

 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 20: Experts’ results of the nuclear GenIV surveys per expert and per R&D scenario 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 21: Experts’ results of the nuclear SMR surveys per expert and per R&D scenario 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 22: Experts’ results of the PV surveys per expert and per R&D scenario  

 
Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Figure 23: Experts’ results of the CPV surveys per expert and per R&D scenario 

 

Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
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Individual experts Non harmonized surveys 

CCS 

 Figure 24: CCS survey per expert and per R&D scenario  

 

 
Note: The lines range from the 10th to the 90th percentiles and the marker in between represents the 50th 
percentile. 
Source: Experts’ results of the UMass (Jenni, Baker, and Nemet 2013). 
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 Figure 25: FEEM CCS survey per expert and per R&D scenario  

 

Note: The lines range from the 10th to the 90th percentiles, while the marker in between represents the 50th 
percentile. R&D level 1 corresponds to no further R&D for the specific capture technology is provided by the EU; 
R&D level 2 is as level 1 but some type of carbon price is enacted worldwide, beginning in 2015 (under the 
assumption that whatever form the policy takes, it has the effect of about a $100/tonne CO2 Carbon Tax 
worldwide); R&D level 3 assumes that the EU increases R&D investments in a specific capture technology 
substantially, to about $250 million per year, starting in 2015 and continuing at that level through 2025. As a 
reference, since 2002 annual R&D investments for capture technologies in the EU ranged between 0.6-111.0 
Million 2010$, with an average of 41.6 Million 2010$). 
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Vehicles  

Figure 26: FEEM vehicle batteries survey per expert and per R&D scenario 
 

 

Note: The lines range from the 10th to the 90th percentiles, while the marker in between represents the 50th 
percentile. 
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Figure 27: Harvard vehicles survey per expert and per R&D scenario  
 

 

Notes: The lines range from the 10th to the 90th percentiles, while the marker in between represents the 50th 
percentile. 
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Utility Energy Storage  

Figure 28: Harvard storage survey per expert and per R&D scenario 

 
Note: The lines range from the 10th to the 90th percentiles, while the marker in between represents the 50th 
percentile. 
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Natural Gas 

Figure 29: Experts’ results of the Stanford natural gas survey per expert and per R&D scenario 

  

Source: Bistline 2013 
Note: The lines range from the 10th to the 90th percentiles, while the marker in between represents the 50th 
percentile. 
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Appendix B:  Qualitative data from studies, including key research areas, 
technology bottlenecks and impediments to deployment 

Here we summarize some of the key technical barriers and additional areas of research that experts 
thought were important to make progress on the various technologies considered by the various 
studies. We present, in turn, information for the technology areas for which information on additional 
research and policy considerations was available. We further divide each of these technology 
subsections by study. We conclude Appendix B with a section summarizing results on FEEM experts’ 
estimates on the probability of various deployment scenarios. 

Bioelectricity    

Harvard survey (text sourced from Anadón, Bunn and Narayanamurti 2014, p.64).  

Experts in the Harvard survey (which covered both bioelectricity and biofuels) identified the need to fur-
ther develop: microbiological technology (e.g., for the fermentation of lignocellulosic biomass), biomass 
pretreatment processes, enzymes, (e.g., ethanologens, and enzyme-based transesterification), and the 
production of carbohydrate omega-3 oils from biofuel byproducts. Experts also identified the need to 
support research in feedstock transportation, land use changes, and life-cycle emissions associated with 
biomass to reduce the uncertainties related to the cost and environmental impacts of bioenergy tech-
nologies. Several of the experts were concerned that feedstock RD&D funded by the U.S. Department of 
Agriculture was insufficient and that the private sector would not address feedstock research needs. 
They specifically stated that cellulosic feedstocks and algae should be emphasized, that plant genetic en-
gineering should continue to be explored, and that better harvesting methods are needed. Experts who 
recommended increasing the support for feedstock development insisted that feedstock issues would 
dominate the scale, cost, and environmental impact of bioenergy technologies. 

UMass survey (Baker and Keisler 2011) 

In the UMass biofuels paper, there was disagreement among the experts as to the importance of 
government funding to industry (as opposed to academia for more basic science). One expert identified 
the biofuels agenda as a problem of basic research, and another specifically noted that this problem will 
not be helped by industry. On the other hand, three other experts specifically mentioned that funding 
for industry was key. The results of this survey indicated that the highest priority investments are into 
selective thermal processing, with the top priority on a bio-oils path. 

FEEM survey (Fiorese et al. 2014) 

Figure 29 below summarizes the bottleneck and proposed solutions that emerged from the interviews of 
the FEEM bioenergy experts. Almost all experts expressed concern about the sustainability of biomass 
supply. Competition for land with food crops and with carbon sinks (e.g., forests and grasslands), the 
extensive use of water , the pollution deriving from the use of fertilizer and the threats to biodiversity 
and soil productivity are all major concerns linked with biomass technologies diffusion. The majority of 
experts suggested that most of these issues and externalities can be mitigated with adequate policies, 
such as a certification system (as already in existence for liquid fuels in the EU) that guarantees the 
sustainability of resources and controls the origin of feedstocks as well as life cycle emissions of GHG for 
electricity from biomass. In general, the suggested role for public policy, in addition to investments, is 
high.  
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Figure 30: Barriers and proposed solutions, FEEM survey on bioenergy 
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Biofuels 

Harvard biofuels comments are summarized in the bioelectricity section above. 

UMass biofuels comments are summarized in the bioelectricity section. 

FEEM survey (Fiorese et al. 2013)Experts involved in the FEEM biofuel elicitation indicated that the 
highest concerns in terms of non-technical barriers were competition of land with food and 
environmental externalities. These two by far surpassed geographical constraint, which was the third 
most named non-technical barrier. In all three cases, policy intervention was the factor that experts 
thought would contribute to additional deployment (see Figure 31). 
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Figure 31: Barriers and proposed solutions, FEEM survey on biofuel technologies 
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Nuclear fission  

Harvard survey (text sourced from Anadón, Bosetti et al. 2011, p.66) 

Most experts highlighted the importance of sensors, digital information and communications technology, 
prognostics, diagnostics, and system-wide modelling as interdisciplinary technology areas that are very 
important to the field of nuclear energy. In particular, experts mentioned the importance of advanced 
digital systems for safety, and remote real-time monitoring of reactors and fuel-cycle facilities. The 
improvement of manufacturing technologies and the reduction in the size of components to allow fac-
tory construction of complete units were also mentioned by many experts as important for the future of 
nuclear power. 

Experts also emphasized the need to fund anticipatory research at the US Nuclear Regulatory Commis-
sion, so that the regulatory basis for licensing Gen IV reactors can be developed in parallel with DOE 
RD&D. A couple of experts felt that Thorium fuel cycles (while partially included in current programs) 
could be more fully addressed. Similarly, some expressed the need to fund (or at least track the progress 
of) the Th-U233 fuel cycle, which is being conducted in other countries, and at the very least needs to be 
tracked. 

Also mentioned as areas that need to be funded are (1) the licensing of coupled desalination systems 
that improve economics and waste heat utilization, (2) high-efficiency dry cooling applications (site 
placement of nuclear and other thermal technologies will be limited by consumptive water-use 
constraints), and (3) close coupled siting conditions and requirements for industrial site applications. The 
integration of MOX fuels into the US regulatory system was also discussed. 

In addition, the Harvard and FEEM elicitations evaluated non-technical aspects that could hamper 
nuclear power deployment.  As stated in Anadón, Bosetti et al. (2011), the Harvard and FEEM nuclear 
elicitations concluded that:  

 U.S. and E.U. experts largely agree that licensing and construction delays, costs overruns, and 
insufficient government support result in an increased risk premium for nuclear power facilities over 
natural gas. 

• Most E.U. and U.S. experts are convinced that in the short term the risk premium on nuclear 
investments will remain higher than the natural gas plant discount rate, but in the long term there 
will be a progressive decrease in the importance of non-technical factors on the risk premium for 
nuclear investments. 

• Global events like nuclear accidents, major costs overruns, and proliferation from the civilian 
nuclear energy system could cause a significant decrease in the rate of construction of new nuclear 
power plants in the E.U. and in the U.S. 

• Successful siting and demonstration projects, and failures in the use of fossil fuel and renewable 
energy technologies would have a positive effect on the deployment of nuclear power Harvard 
experts. 

The aforementioned publication has significantly more detail on barriers related to nuclear fission 
deployment. 

UMass survey (Baker, Chon, and Keisler 2008a) 
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Baker, Chon and Keisler (2008a) considered issues other than cost and efficiency, including water usage 
and proliferation concerns. The experts considered the success of an advanced High Temperature 
Reactor (HTR) under two water usage conditions. On average, across experts and funding scenarios, they 
found the likelihood of success with low water usage about 65% of that of success with high water 
usage. This indicates there is some likelihood of achieving low water, but it is lower. The definition of 
success for HTRs included a deep burn rate 10 times that of conventional light water reactors.  

CMU survey (Abdulla, Azevedo, and Morgan 2013) 

Abdulla, Azevedo and Morgan (2013) asked experts for their judgment regarding the areas that have the 
largest potential for improvement expected from SMRs.  Their results indicated that factory fabrication 
holds the largest potential for improvement, followed by reduced construction time, design simplicity 
and flexibility in siting options. Experts in the CMU study also exhibited little consensus regarding their 
expectations of the friendliness to SMRs in the future regulatory environment in the US (e.g., regulations 
allowing multimodule plant construction, siting SMR plants close to population centres, or exporting 
SMRs to countries with little or no experience operating nuclear plants). 

Experts believed that the risks of loss-of-coolant accidents and the loss of offsite power were likely to be 
lower for SMRs than for conventional plants. As in the FEEM and Harvard surveys, experts discussed 
possible benefits in spent fuel management and proliferation risk. 

Solar PV and CSP 

Harvard survey (text sourced from the Appendix of Anadón, Bunn et al. 2011, p.67). 

Experts cited the following areas that could benefit from research in PV technologies: high efficiency 
lighting and displays; wafer lift-off processes; low cost single crystalline substrates; spectral splitting 
optical components; power electronics for servers, appliances, EVs, wind turbines; microelectronics; and 
energy storage and smart grid infrastructure. The experts agreed, in general, that technology challenges 
in PV are very different than in telecommunications and semiconductors, especially beyond the applied 
research stage, because PV is exposed to harsh environmental conditions for decades and generates a 
low-cost commodity, namely electricity, from a diffuse energy source. 

FEEM survey (Bosetti et al. 2012) 

Figure 32 shows the perceived barriers that emerged from the discussion with the FEEM solar 

experts. First, “lock-in” effects, sunk costs and long-lived capital are, according to the experts, major 

impediment to switch to solar, unless direct policy intervention accelerates capital turnover. Second, 

renewable energy sources feeding into an electric power grid do not receive full credit for the value 

of their power unless specific supporting policies are in place. Such unfavourable power pricing rules 

need to be overcome by policy intervention. Third, intermittency in the supply of solar power should 

be overcome with adequate storage systems and better grid integration. Other non-technical 

barriers mentioned by the experts are the availability of rare metals for some specific PV and CSP 

systems, as well as land availability and other geographical constraints (e.g., sun irradiation). The 

relative importance of these last barriers is low compared to the other three previously mentioned. 
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Figure 32: Barriers and proposed solutions, FEEM survey on solar technologies 

 

 

Near Zero survey (text sourced from Inman 2012, p.7) 

Further process cost reductions would require many aspects of the solar power industry to develop 
favorably, said Gregory Nemet (University of Wisconsin). These include “reduction in the cost of 
materials,” “technical advances that improve electrical conversion efficiency,” and “new technical 
generations of PV.” “If most of these do not occur,” he said, “it is hard to see how [the expected prices] 
can be attained and then sustained.” For prices to fall substantially below the average expectations in 
Near Zero’s survey would likely require changes in the solar power industry, according to comments from 
many of the participants. For example, experts said that reaching much lower prices would require a 
“breakthrough in BOTH semiconductor and encapsulation materials costs” (Steven Hegedus, University of 
Delaware), or a “breakthrough in installation methodology” (Danielle Merfeld, GE Global Research). 

These responses stress the need for continued research and development in order for prices to continue 
falling for the long term, beyond the next decade. 
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CMU survey (text from Curtright, Morgan and Keith 2008, p.9036) 

Even if learning produces cost reductions faster than expected and deployment costs are consequently 
lower than predicted, absent some dramatic breakthrough resulting from research, the cost differential 
will remain large because PV is as much as an order of magnitude more expensive than other low-carbon 
options. Given this, and given the very mixed views of our respondents about the relative effectiveness of 
expanded RD&D versus expanded deployment, policy makers should think very carefully before endorsing 
a deployment-based strategy as a vehicle to reduce PV costs if the goal is bulk low-carbon electricity 
supply. 

UMass survey (Baker, Chon and Keisler 2009a) 

In the UMass survey there was quite a bit of disagreement across the experts on the efficacy of R&D 
investments. Some of the experts strongly believed that “cost reduction is a manufacturing-driven issue 
and that achieving desirable production costs will require much work beyond government-funded lab 
research.”  One expert said “Manufacturing costs will require a significant amount of development 
which is much more expensive than basic research and I do not believe that $15,000,000/year would be 
sufficient to meet this cost target with any reasonable probability.” 

Others: Batteries 

UMass survey (Baker, Chon and Keisler 2010) 

In the UMass survey, there was some disagreement over how many cycles a battery would need to 
achieve to be viable. One expert felt that 1000 cycles was fine, and he ended up having a relatively high 
probability of success. Another expert felt that achieving 3000 cycles was the key hurdle for success, but 
was not sure it could be achieved at any level of funding. Another expert noted that achieving 3000 
cycles was “not amenable to an Edisonian trial and error approach”, but that it would rather most likely 
come from independent investments into material science research. This last expert felt additionally, 
that if the cycling problem were solved, “private investment will address the cost problem.” The experts 
in general felt that in order to achieve a low cost/high performance outcome it would require a great 
deal of engineering beyond the science; there was disagreement about the likelihood that this would be 
provided by the private sector. 

FEEM survey (Bosetti et al. 2011)Figure 33 clearly shows that the main concern of experts regarding the 
diffusion of electric-drive vehicles is the behavior of consumers, and that a combination of marketing, 
policies and education is considered as the avenue for overcoming those barriers. 
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Figure 33: Barriers and proposed solutions, FEEM survey on battery technologies 
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Others: Utility scale energy storage  

Harvard survey (text sourced from the appendix of Anadón, Bunn et al. 2011) 

Harvard experts designated the “other” technology category in the allocation as comprising underground 
modular pumped hydro, storage systems, grid monitoring, smart meters (enabling), CAES with heat 
storage, liquid air energy storage, thermistor based storage, and mechanical storage systems other those 
already identified in the elicitation. 

Experts responded with many technologies that could be concurrently developed with utility-scale energy 
storage technologies. These include vehicle technologies in the transportation sector, particularly electric 
vehicle technologies and fuel cells, concurrently with batteries, flow batteries, and electrochemical 
capacitors. Flywheels for energy storage could overlap with industrial applications. Personal mobility 
storage, distributed storage and residential thermal storage could also be developed in parallel. An 
added benefit of improving residential thermal storage is improvement in building cooling technology 
and efficiency. Many experts also cited strong overlap with smart grid technologies and systems and 
efforts to improve grid operations, especially at the substation level and for cyber security. Un-interrupt-
ible power supply (UPS), power conversion, and semiconductor switching were other areas of overlap. 
Heat exchangers and gas compressors (e.g., for industrial gases) overlapped with CAES development. 
Mining equipment improvements and other battery chemistries, such as advanced lead acid, should also 
be developed alongside batteries for utility-scale storage. 

Many experts responded that there should be interdisciplinary research between storage technologies 
and transmission and distribution technologies. Experts noted that storage technologies could radically 
change transmission and distribution system planning needs. This potential needs to be studied through 
production cost models and mapped in order to reflect the system benefits of storage and make the most 
optimal investments. Better understanding is needed through improved economic dispatch or market 
models, and models of load flows (e.g., storage as a sink) and transmission dispatch (e.g., storage as a 
transmission service) where storage is an integral component of the system. 
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Technology adoption  

The FEEM surveys for solar, batteries, bioenergy and biofuel also asked experts to comment on the 
potential of technology diffusion into the market in different countries (OECD, fast developing, 
developing). Figure 34 reports the probabilities that each expert associated with three diffusion 
scenarios, defined as “low”, “medium” and “high” penetration scenarios by 2050. Comparing across 
technologies, solar is the one where experts were more optimistic about the highest penetration 
scenario in all three macroregions. Indeed, probabilities of diffusions are comparable across more 
developed and less developed countries, indicating the high perceived potential of this decentralized 
electricity-production technology. For bioenergy, experts were consistently putting more probability on 
the medium penetration scenario. Also, in this case, differences across different world regions seem 
limited. In the case of biofuels, experts are putting the largest probability on the low penetration 
scenario. In the case of batteries, more diffusion is expected in developed and fast-developing countries, 
reflecting their market potential.  

Figure 34: FEEM experts’ probability of diffusion of technologies per region 
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Appendix C: Data standardization process  

C.1 Data cleaning and harmonization.  

As noted in the Appendix of Anadón et al., (2015):  

“In order to compare and aggregate the values that were elicited in the individual surveys, a set of 
harmonizing assumptions had to be made to allow a meaningful comparison. For each of the 
assumptions that differ across studies (i.e., as currencies and currency years, endpoint years, and other 
underlying technical factors) we had to make a decision on what value to converge to. The 
harmonization process per se required months of research and discussions between the authors of the 
different elicitation studies.” 

This Appendix briefly summarizes the data on cleaning and harmonization procedures. We refer the 
interested reader to the original articles (Baker, Bosetti and Jenni, et al., 2014; Anadón et al., 2015; 
Anadón, Nemet and Verdolini 2013; Verdolini et al., 2015; Nemet, Anadón and Verdolini 2015) for 
further details. This Appendix borrows heavily from the Appendices and explanations included in these 
articles.  

First, whenever elicitation groups collected different metrics, the harmonization process entailed 
constructing a model to make the data comparable using common assumptions (e.g., insolation and 
discount rates). Details in this respect are explained below in subsection C.1 and organized by 
technology.  

Second, all surveys included in the harmonization procedure elicited costs in 2030, with the exception of 
the UMass studies, which asked experts about 2050. The explanation of how UMass elicited values were 
adjusted is presented in subsection C.2. 

Third, harmonization of the R&D levels with which experts were confronted is explained in subsection 
C.3.  

Section C.1: Harmonization of cost estimates 

As explained in Section 2, the harmonization process entailed converting elicited estimates into a cost 
metric of 2010$/kWh in 2030 for the studies and technologies that were included in the process. This 
common metric represented an LCOE for solar photovoltaics, a non-energy LCOE for bioelectricity, a 
non-energy levelized cost of fuel for biofuels, a partial levelized cost of electricity for nuclear (including 
only capital cost), and a levelized additional cost of CCS.  Harmonization assumptions are detailed below 
for each technology and study.  

Table C.1, below, is compiled using information from Anadón et al., (2015); Anadón, Nemet and 
Verdolini (2013); Baker, Bosetti, Anadón et al. (2015); Nemet, Anadón and Verdolini (2015) and Verdolini 
et al.(2015) and summarizes the elicited values and key assumptions for the UMass, Harvard, CMU and 
FEEM harmonized studies. 
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Table C 1. Summary of key assumptions in the harmonization process 

Group   Biofuels   
Bioelectricity  

 CCS   Nuclear  Solar 

UMass        
(metrics    
elicited)   

Capital cost 
per gge 
(gallon 
 of gasoline 
equivalent) 
capacity, 
efficiency, 
other 

 Various 
technical   
 endpoints 
and cost  
  

 Various 
technical   
 endpoints 
and cost  
  

 Various 
technical   
 endpoints 
and cost  
                      

Manufacturing 
cost per m2 
efficiency lifetime 

FEEM      
metrics   
elicited  

Cost per 
gge O&M 
cost   

Cost per 
kWh O&M 
cost      

 N/A                  
 

Overnight 
capital   
cost  

LCOE 
  
  

Harvard   
metrics   
elicited  
        
          
          
          

Cost per 
gge yield            
(gge/dry 
ton      
 Of 
feedstock) 
plant life 
feedstock 
costs 

Cost per 
kwh yield          
 (gge/dry 
ton   
 of 
feedstock) 
 plant life     
  

Overnight 
capital       
cost 
(\$/kW)            
generating              
efficiency, 
(HHV)                  
capacity 
factor book 
life               

Overnight 
capital   
cost 
(\$/kW)        
fixed O\M 
cost 
variable            
O\M cost 
fuel cost 
thermal 
burnup  

Module capital cost per 
Wp, module efficiency, 
inverter cost, 
inverter efficiency, 
inverter lifetime 

CMU  
metrics   
elicited  

 N/A                    N/A                    N/A                  Overnight 
capital cost                
  

module prices in $/W  
for different solar 
systems  

Common 
Metrics 
Harmonized  

Non-energy     
levelized 
cost of fuel 

Non-energy    
LCOE 

Levelized 
capital cost 

Levelized 
capital cost    

LCOE 
  
  

Key           
Assumptions   
        
            
            
            
            
            
            
            
            
            
  
  
  
            

0.031 
kwh=1gge  
Calculations 
assume 
that the 
fraction      
of  non-
energy 
costs   
at the mean 
is the     
same 
across the        
distribution
. See      
description 
below      
about 

Calculations 
assume  
that the 
fraction    
of non-
energy costs  
at the mean 
is the   
same across 
the      
distribution. 
See    
description 
below    
about 
assumptions    
needed to 
turn     

Interest 
Rate=0.1 
Lifetime=40 
Capacity 
Factor=0.9 
See 
description    
below 
needed       
about 
assumption
s  
to turn 
UMass 
2050 
estimates 
to 2030  
estimates.      

Interest 
Rate=0.1 
Lifetime=40 
Capacity 
Factor=0.9 
See 
description    
below 
needed       
about 
assumption
s  
to turn 
UMass 
2050 
estimates 
to 2030  
estimates.      

Capacity Factor: 12% 
Factor  
  
Discount rate: 10%  
Peak Power Insolation 
(Wp/m2): 1,000  
Cost of Power Cond 
($/Wp): 0.1 
Hours per year: 8760 
Lifetime: 20 
  
Moduel Area Costs 
($/m2): 350 
BOS m2:  
75 UMass 
               
250 Harvard  
See description below 
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assumption
s      
needed to 
turn         
UMass 
2050             
estimates              
to 2030 
estimates.   
  
  
  

UMass 2050      
estimates        
to 2030 
estimates.   
  
  
  
              

                     
                    
                    
  
  
  
                    

                     
                     
                     
  
  
  
                     

about assumptions 
needed 
to turn Umass 2050 
estimates to 2030 
estimates. 
 
For CMU solar, Module 
prices $/W were 
converted 
into LCOE $/kWh using 
the average values  
from the Harvard study 
for the other cost 
components  
and BOS as well as other 
assumptions above 
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C.2 Temporal harmonization of UMass data. 

As explained in Anadón et al., (2015):  

In order to adjust the UMass endpoints from 2050 to 2030, which was the time frame used in the FEEM 
and Harvard studies, we backcast the UMass 2050 estimates to 2030 using Moore's Law and parameters 
from (Nagy et al. 2013). (Nagy et al. 2013) analyzed a large dataset for several technologies, and 
concluded that the estimated costs that used only the parameter time performed approximately as well 
as the traditional experience curve. Thus, we use the following relation based on Moore's Law: 

 

Where m is a parameter of this model calculated from B, the learning rate, and g, the growth rate of 
production, as follows. 

 

This method is used to estimate the values for 2030: 

 

The parameter m is calculated using the learning parameters B, taken from the literature, and the 
growth parameter g provided in  (Nagy et al. 2013). A summary for all technologies is reported in Table C 
2. 

Table C 2.  

 

Source: Reprinted with permission from Baker, Bosetti and Anadón, et al. (2014). 

Section C.3: Harmonization of R&D levels 

The UMass, Harvard and FEEM experts were confronted with different R&D scenarios. The following text 
is a quote from the Appendix of Anadón et al. (2015) explaining the different scenarios: 

Experts were asked to assess future costs and performance of energy technologies, for three given levels 
of R&D funding by governments in order to study the effect of government R&D on reducing the costs of 
clean energy technologies. Each team defined R&D funding levels differently.  […] funding levels are 
grouped into three broad categories, Low (which is consistent with a business-as-usual (BAU) scenario for 
FEEM, an increase of 50% to 200% over BAU for Harvard, and small investments, independent from the 
BAU, into specific technologies for UMass), Medium (ranging between an additional 50% to a 16-fold 
increase over low) and High (ranging between an additional 30% to a 10-fold increase over medium). 
And, while both Harvard and FEEM included demonstration expenditures, UMass asked questions about 
smaller R&D scenarios that did not include demonstration expenditures.   
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The CMU nuclear cost elicitation made R&D assumptions consistent with a BAU scenario (Low R&D). 
Conversely, the solar CMU study made assumptions about both R&D investment and specific 
deployment levels. Specifically, experts were asked for their estimates under four scenarios: 

a) Status quo, defined as 2008 government RD&D funding levels for the PV technology being 
considered and current government incentive levels for deployment of PV technologies in general; 

b) 10x RD, defined as 10 times the 2008 RD&D level; 

c) 10X deploy, defined as a 2008 RD&D investment level, accompanied by a 10-fold increase in 
deployment in the United States;  

d) 10X deploy and 10X RD&D, defined as a combination of scenarios (b) and (c). 

Scenario (a) was categories as “low” RD&D and elicitations, while scenarios (b) as “high” RD&D.  Data for 
scenarios c and d were not used.  

Details on the R&D levels in each study and on the coding into low, mid and high RD variables are 
reported in Table C 3 below. 

Table C 3: R&D levels  

Technology Group Source/Publication Specified R&D Budget 

Level  (millions of 2010 
United States dollars) 

RD levels shown in this study 

 Bioelectricity UMass Unpublished 15 
50 
150 

Low 
Medium 
High 

Harvard (Anadón, Bunn, et 
al. 2011) 

BAU: 214 
Ave. REC R&D: 585  
0.5 REC 
10 REC 
(includes biofuels 
budget) 

Low 
Medium 
Not included in this report High 

FEEM (Fiorese et al. 
2014) 

169 
254 
338 

Low 
Medium 
High 

Biofuel UMass (Baker and Keisler 
2011) 

13 
201 
838 

Low  
Medium 
High 

Harvard (Anadón, Bunn, et 
al. 2011) 

BAU: 214 
Ave. REC R&D: 585  
0.5 REC 
10 REC 
(includes biomass 
budget) 

Low 
Medium 
Not included in this report High 

FEEM (Fiorese et al. 
2013) 

168 
252 
336 

Low  
Medium 
High 

CCS UMass (Baker, Chon, and 
Keisler 2009b) 

13 
48 
108 

Low  
Medium 
High 
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Harvard (Chan et al. 2011) BAU: 701 
Ave. REC R&D: 2250  
0.5 REC 
10 REC 
(includes coal and gas 
CCS budget) 

Low 
Medium 
Not included in this report High 

 Chung et al. (Chung, Patiño-
Echeverri, and 
Johnson 2011) 

BAU 
10 BAU 
BAU + deployment 
10BAU + deployment 

Low 
High 
Not included in this report 
Not included in this report 

Nuclear UMass (Baker, Chon, and 
Keisler 2008a) 

40 
480 
1980 

Low 
Mid 
High 

Harvard (Anadón et al. 
2012) 

BAU: 466 
Ave. REC: 1883  
0.5 REC 
10 REC 
(includes Gen III+ and 
IV, both large-scale 
and SMRs) 

Low 
Mid 
Not included in this report 
High 

FEEM (Anadón et al. 
2012) 

BAU: 800 
Ave. REC: 1514  
0.5 REC 
10 REC 
(includes Gen III+ and 
IV, both large-scale 
and SMRs)  

Low 
Mid 
Not included in this report 
High 

CMU (Abdulla, Azevedo, 
and Morgan 2013) 

No R&D scenarios 
explicitly considered, 
but interpreted as 
consistent with BAU 
R&D budget. 

Low 

Solar Umass (Baker, Chon, and 
Keisler 2009a) 

25  
140 
 

Low 
Mid 

Harvard (Anadón, Bunn, et 
al. 2011) 

BAU: 143 
Ave. REC: 409  
0.5X REC 
10X REC. 

Low 
Mid 
Not included in this report 
High 

FEEM (Bosetti et al. 
2012) 

171 
257 
342 

Low 
Medium 
High 

Near Zero (Inman 2012) No R&D scenarios 
considered, instead 
scenarios were about 
global deployment. 

Not included in this report 

Curtwright (Curtright, Morgan, 
and Keith 2008) 

BAU 
10 BAU 
BAU + deployment 
10BAU + deployment 

Low 
High 
Not included in this report 
Not included in this report 
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