A public finance perspective on climate policy Six interactions that may enhance welfare

Jan Siegmeier, **Linus Mattauch**, Max Franks, David Klenert, Anselm Schultes, Ottmar Edenhofer

Technische Universität Berlin, Mercator Research Institute on Global Commons and Climate Change, Potsdam Institute for Climate Impact Research

Motivation

Fundamental imbalance in climate change economics

Comprehensive concept of benefits of mitigation policies:

 Avoided physical damages from future global warming, weighted by their economic impact services, etc.

Motivation

Comprehensive concept of benefits of mitigation policies:

 Avoided physical damages from future global warming, weighted by their economic impact services, etc.

Narrow concept of costs of mitigation policies:

- Only opportunity costs of foregone consumption.
- Treats climate change as an externality in isolation.
- Neglects *fiscal* interactions with policies for non-climate objectives: health, education, infrastructure, redistribution, etc.

Thesis:

Motivation

Fiscal interactions of climate policy with non-climate goals ...

- 1. may increase welfare beyond purely environmental benefits,
- 2. and affect intra- and intergenerational distribution.
- Effects occur on the public revenue and public spending side, and affect all types of climate policy instruments.

• (Major) Premise:

Separate cost-benefit estimates for climate- and other policies do not add up due to equilibrium effects (and are undesirable for political economy reasons).

Thesis:

Fiscal interactions of climate policy with non-climate goals ...

- 1. may increase welfare beyond purely environmental benefits,
- 2. and affect intra- and intergenerational distribution.
- Effects occur on the public revenue and public spending side, and affect all types of climate policy instruments.

• (Major) Premise:

Separate cost-benefit estimates for climate- and other policies do not add up due to equilibrium effects (and are undesirable for political economy reasons).

Thesis:

Motivation

Fiscal interactions of climate policy with non-climate goals ...

- 1. may increase welfare beyond purely environmental benefits,
- 2. and affect intra- and intergenerational distribution.
- Effects occur on the public revenue and public spending side,

(Major) Premise:

• Thesis:

Motivation

Fiscal interactions of climate policy with non-climate goals ...

- 1. may increase welfare beyond purely environmental benefits,
- 2. and affect intra- and intergenerational distribution.
- Effects occur on the public revenue and public spending side, and affect all types of climate policy instruments.

• (Major) Premise:

Separate cost-benefit estimates for climate- and other policies do not add up due to equilibrium effects (and are undesirable for political economy reasons).

• Thesis:

Motivation

Fiscal interactions of climate policy with non-climate goals ...

- 1. may increase welfare beyond purely environmental benefits,
- 2. and affect intra- and intergenerational distribution.
- Effects occur on the public revenue and public spending side, and affect all types of climate policy instruments.

(Major) Premise:

Separate cost-benefit estimates for climate- and other policies do not add up due to equilibrium effects (and are undesirable for political economy reasons).

Motivation

Why should I care and why is it so complicated?

"Economists, like everyone else, sometimes keep ideas in watertight compartments." (Tullock 1967)

Why should I care and why is it so complicated?

"Economists, like everyone else, sometimes keep ideas in watertight compartments." (Tullock 1967)

Source: anthonyfernando.com

Motivation 000000

Why should I care and why is it so complicated?

"Economists, like everyone else, sometimes keep ideas in watertight compartments." (Tullock 1967)

Source: anthonyfernando.com

A bad idea if things interact. It leads to unsound and distorted policy advice. Motivation

Previous work: Costs and revenues of climate change mitigation

Main focus of climate policy: Cost assessments with IAMs

- Gross costs of climate change mitigation: first-best compared to business as usual.
- Net costs of climate change mitigation: Gross costs minus avoided damages.

Motivation

Previous work: Costs and revenues of climate change mitigation

Main focus of climate policy: Cost assessments with IAMs

- Gross costs of climate change mitigation: first-best compared to business as usual.
- Net costs of climate change mitigation: Gross costs minus avoided damages.

Less attention: Revenue from ambitious mitigation policy

 Carbon rent of ambitious mitigation policy: 2.3 % of GDP (Bauer et al., 2013), $\approx 15\%$ of taxes levied today

Previous work: Incomplete and unsystematic

The Double Dividend hypothesis (e.g. Bovenberg 1999):

- Swap Pigouvian tax for distortionary (labor) tax.
- Negative gross costs if tax system previously inefficient.

Motivation

Previous work: Incomplete and unsystematic

The Double Dividend hypothesis (e.g. Bovenberg 1999):

- Swap Pigouvian tax for distortionary (labor) tax.
- Negative gross costs if tax system previously inefficient.

Recent models include other selected public finance elements:

- Infrastructure policy (Waisman et al. 2012)
- Public debt (Carbone et al. 2013; Rausch et al. 2013),
- Intragenerational inequality reduction (Bento 2013)
- Intergenerational Pareto-improvements (Karp and Rezai 2014)

Previous work: Incomplete and unsystematic

The Double Dividend hypothesis (e.g. Bovenberg 1999):

- Swap Pigouvian tax for distortionary (labor) tax.
- Negative gross costs if tax system previously inefficient.

Recent models include other selected public finance elements:

- Infrastructure policy (Waisman et al. 2012)
- Public debt (Carbone et al. 2013; Rausch et al. 2013),
- Intragenerational inequality reduction (Bento 2013)
- Intergenerational Pareto-improvements (Karp and Rezai 2014)

There are other spending options, and effects on the revenue-raising side!

interaction of climate policy and non-climate inefficiencies

Public revenue-raising:

Motivation

- 1. Open economy: Reduced tax competition
- 2. Closed economy: Portfolio effects

Public expenditures:

- 3. Restructuring the composition of public spending
- 4. Spending on underfunded public capital stocks, reducing public debt

Intra- and intergenerational effects:

- 5. Spending to reduce intragenerational inequality
- 6. Intergenerational Pareto-improvement through different transfer mechanisms

Climate policy under tax competition (open economy)

Inefficiency: Tax competition leading to underprovision of local public goods

Thesis: Taxation of fossil resources is preferable to capital taxation as it raises welfare:

- Capital is mobile, leading to a downward pressure on capital taxes.
- Fossil resources give rise to scarcity rent, capital does not.
- Carbon tax captures part of the resource rent.
- These revenues are invested in local productive public goods.
- Franks et. al. (2015) show that no green paradox occurs.

Inefficiency: Tax competition leading to underprovision of local public goods

Thesis: Taxation of fossil resources is preferable to capital taxation as it raises welfare:

- Capital is mobile, leading to a downward pressure on capital taxes.
- Fossil resources give rise to scarcity rent, capital does not.
- Carbon tax captures part of the resource rent.
- These revenues are invested in local productive public goods.
- Franks et. al. (2015) show that no green paradox occurs.

Inefficiency: Tax competition leading to underprovision of local public goods

Thesis: Taxation of fossil resources is preferable to capital taxation as it raises welfare:

- Capital is mobile, leading to a downward pressure on capital taxes.
- Fossil resources give rise to scarcity rent, capital does not.
- Carbon tax captures part of the resource rent.
- These revenues are invested in local productive public goods.
- Franks et. al. (2015) show that no green paradox occurs.

Inefficiency: Tax competition leading to underprovision of local public goods

Thesis: Taxation of fossil resources is preferable to capital taxation as it raises welfare:

- Capital is mobile, leading to a downward pressure on capital taxes.
- Fossil resources give rise to scarcity rent, capital does not.
- Carbon tax captures part of the resource rent.
- These revenues are invested in local productive public goods.
- Franks et. al. (2015) show that no green paradox occurs.

Portfolio effect of rent taxation (closed economy)

Inefficiency: Underaccumulation of private capital

What is a portfolio effect?

- Tax on a flow of revenues of an asset
 - \rightarrow future flow of revenues and thus price of asset lowered
 - \rightarrow investment directed into alternative assets (arbitrage!).
- Beneficial if the alternative stock's level increases and was previously too low.

Application to climate policy: Siegmeier et al. (2015)

Portfolio effect exists if there are markets for fossil stocks (e.g. oil field and coal mines).

- Private decisions depend on public spending.
- Restructuring public spending
- Example: Transport

- Private decisions depend on public spending.
- Restructuring public spending to complement "direct" carbon pricing lowers mitigation costs.
- Example: Transport

Public Expenditures: Structure

- Private decisions depend on public spending.
- Restructuring public spending to complement "direct" carbon pricing lowers mitigation costs.
- Example: Transport infrastructure.
- Existing literature sparse, some numerical results, analytical treatment missing so far.

source:de.wikipedia.ord/criticalmass

Public Expenditures: Structure

- Private decisions depend on public spending.
- Restructuring public spending to complement "direct" carbon pricing lowers mitigation costs.
- Example: Transport infrastructure.
- Existing literature sparse, some numerical results, analytical treatment missing so far.

source:de.wikipedia.ord/criticalmass

Inefficiency: Public Capital underfunded, public debt suboptimally high

Public Expenditure: Optimal level through alleviated budget constraint

Inefficiency: Public Capital underfunded, public debt suboptimally high

If public capital is productivity- or utility-enhancing, investing revenue from mitigation policy reduces mitigation costs.

- E.g. physical infrastructure, education, the health sector
- Public capital is in fact undersupplied in many regions.

Public Expenditure: Optimal level through alleviated budget constraint

Inefficiency: Public Capital underfunded, public debt suboptimally high

If public capital is productivity- or utility-enhancing, investing revenue from mitigation policy reduces mitigation costs.

- E.g. physical infrastructure, education, the health sector
- Public capital is in fact undersupplied in many regions.

Revenues from mitigation policy to reduce public debt may reduces mitigation costs, if

- debt reduction is a goal in itself (Carbone et al. 2013) or
- debt negatively impacts economic performance (Rausch et al. 2013).

Inefficiency: Suboptimally high inequality

- Climate policies are widely regarded as regressive (Bento et al. 2013)
- However, this can be alleviated through the design of environmental policies and redistribution schemes.

Solutions

- Redistribution: Labor taxes cuts make the carbon tax progressive (Chiroleu-Assouline and Fodha 2014, Klenert et al. 2015).
- 2. Counteract inequality through public expenditure for the poor, in particular through education (unexplored).

Intergenerational Pareto-improvement

"Inefficiency": Current generations pay for avoided damages in the future

Claim:

In principle, there are no costs of climate change. Reason: Correcting an externality is efficiency-enhancing and without costs. (Foley 2007, Broome 2012)

However:

Net costs (mitigation costs minus avoided damages) positive in the present, negative in the future.

Solution:

The net costs may be made negative for each generation by intergenerational transfers.

Our contribution

- Take climate- and public economics out of watertight compartments.
- Identify six interaction effects that may enhance welfare.

Implications for Policy Assessment

- IAMs highly focus on technological options, but should consider fiscal effects and welfare viewpoints beyond CBA/CEA.
- Public economics should take into account the scale of changes in national budgets, which ambitious climate policy will cause.

Methodology: When to treat two fields in isolation?

"Economists, like everyone else, sometimes keep ideas in watertight compartments" (Tullock 1967)

- Should economics focus on specific questions or attempt to get the bigger picture approximately right?
- Practitioner's Perspective: interactions between two fields matter, if these are sufficiently large.
- For climate change and public finance: no good theoretical reasons against taking into account their interactions.
- General case: arguably the largest methodological problem for descriptive economics (Hausman 2013).

Intergenerational Pareto improvements: Is such a transfer possible?

Three possibilities

- Less investment in productive capital stocks (Rezai et al. 2012; von Below et al. 2013).
- Mitigation policy increases the value of assets of current owners (Karp and Rezai 2014, Schultes, Leimbach, Edenhofer 2014).
- Under broken Ricardian equivalence: Higher national debts (Bovenberg and Heijdra 1998).

References I

- Bauer, N., Mouratiadou, I., Luderer, G., Baumstark, L., Brecha, R.J., Edenhofer, O., Kriegler, E. (2013).
 Global fossil energy markets and climate change mitigation an analysis with REMIND. Climatic Change, forthcoming.
- Bento, A.M. (2013). Equity Impacts of Environmental Policy. Annual Review of Resource Economics 5:181-196
- Bovenberg, A.L. and B.J. Heijdra (1998). Environmental tax policy and intergenerational distribution. Journal of Public Economics 67:1-24.
- Broome, J. (2012). Climate matters. Ethics in a warming world. W.W Norton. Norton.
- Carbone, J.C., Morgenstern, R.D., III, Burtraw, D. (2013). Deficit Reduction and Carbon Taxes: Budgetary, Economic, and Distributional Impacts. Resources for the future.
- Chiroleu-Assouline, M. and M. Fodha (2014). From regressive pollution taxes to progressive environmental taxation. European Economic Review 69:126-142
- Foley, D. K., 2008. The economic fundamentals of global warming. In: Harris, J. M., Goodwin, N. R. (Eds.), Twenty-First Century Macroeconomics: Responding to the Climate Challenge, Edward Elgar Publishing.
- Franks, M. (2015). Why finance ministers favor carbon taxes, even if they do not take climate change into account, mimeo.

References II

- Hausman, D.M. (2013). Philosophy of Economics. In: Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), retrieved from: http://plato.stanford.edu/archives/win2013/entries/economics/ (4/4/2014)
- Klenert, D., G. Schwerhoff and O. Edenhofer (2015). The distributional incidence of carbon taxation: The double dividend of redistribution, mimeo.
- Rausch, S. (2013). Fiscal consolidation and climate policy: An overlapping generations perspective. Energy Economics 40, S134-S148.
- Karp, L. and A. Rezai (2014). The political economy of environmental policy with overlapping generations. International Economic Review 55(3), 711-733.
- Tullock, G. (1967). Excess benefit. Water Resources Research 3 (2):643-644.
- Siegmeier, J., L. Mattauch and O. Edenhofer (2015). Climate policy enhances efficiency: A macroeconomic portfolio effect. CESifo Working Paper 5161.
- Schultes, A., M. Leimbach, M. and O. Edenhofer (2014). Should landowners oppose climate change mitigation? a general equilibrium analysis of damages on land. mimeo.
- von Below, D., Dennig, F., Jaakkola, N. (2013). Consuming more and polluting less today: intergenerationally efficient climate policy.
- Waisman, H., C. Guivarch, F. Grazi and J.C. Hourcade (2012). The IMACLIM-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight. Climatic Change 114:101-120.