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Abstract

In this article we construct a theoretical modehttldisentangles the epidemic effect and
profitability effect in the renewable energy diffois. A reduced form of this model, that
incorporates the main factors discussed in diffetfegories of technology diffusion, is applied to
data on wind energy diffusion in China. We findbsiy evidence in support of the dominant role
of the epidemic effect. We also provide new evidean stock and order effects that generate a
reducing marginal effect of profitability in indung technology adoption. Our numerical
simulation demonstrates that such epidemic effactptay a quantitatively important role in the
spread of renewable energy technology and markexifance the optimal social welfare. Our
findings convey important policy implications faggulators when choosing two most commonly

used instruments to induce technology diffusiomferimation provision and subsidies.
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1. Introduction

Addressing increasing environmental and energy emscneeds to accelerate technological
change around the world. A technology can havegmifsgant impact on the economy only if it is
widely adopted by producers and accepted by consumbe question remains open — How will

a renewable energy technology, once introducetlsdifat a reasonably rapid pace?

The wind power sector in China provides a stylifaert. Even though China had virtually no
wind power capacity in 2001, the country has led tfobal wind market with the highest
installed capacity since 2010. As one of relativelgture renewable technologies, wind energy
technology showed two deployment paths in the gasade. While most countries have failed to
accelerate wind technology diffusion, China’s wiedergy has been surging. Some questions
arise. How could an economy catch up a technologsapidly? Are there any specifics on the

pattern of technological change? What are the datine effects of various factors?

To answer these questions, a vast literature pesvido key concepts. One is based on the
economic rationale. By correcting market failureligy intervention brings the system to its
optimal state, where social costs equal social fiisn&he other is derived from the spread of
information. The technological change is a resfilamw interactive process that involves many
actors at the micro level. With a more systemicrapgh, this literature highlights the role of the
national innovation system that governs in facséhmteractions. It still lacks a concrete theory
and empirical framework of investigating these nearland nonmarket-based forces in a
comprehensive manner. This article aims to fillhis gap and support improved policy decision

making in the choice of policy instruments.



In this article, we develop a model that incorpesathe main theoretical streams in the
technology diffusion literature — epidemic, rantqck and order effects. Then, we validate the
model with the historical data of the China’s wiedergy sector. Finally, depending on these
market and nonmarket factors, we numerically siteuthe pathways of optimal subsidy in the

form of electricity production subsidy for maximmg the social welfare in the china’s context.

2. Epidemic, rank, stock and order effects in the liteature of technology diffusion

As defined by the well-known Schumpeterian trilogfytechnological change, technology
diffusion is the process of gradual adoption ofeavriechnology by an economy (Schumpeter,
1934). This process is generally analyzed withiro tiheoretical frameworks: nonmarket

intermediated (or information based) and marketrmediated (or pecuniary) approaches.

Nonmarket approach relies on an analog to the dpyeanepidemic. The more firms/people
are “infected” (those that have adopted the tedwyl the more likely the others will also be
“infected”. Adoption occurs once potential adoptéecome aware of the new technology.
Increasing spread of information between previous@otential adopters reduces the uncertainty
surrounding the technology and leads further ramdption. Earlier works used probability
density functions and Bass models to develop timeeqmt of information acquisition (Mansfield
1963; Bass 1969, 2004). All these epidemic-type etodspecify an S-shaped curve of
technology diffusion: the number of adopters wiltriease over time while the adoption process

is accelerated initially and then decelerated uhélsatiation point is reached.

This epidemic effect is likely to be systemic apthted to the national systems of innovation
(NSI). The concept of the NSI was developed suoeelysby Freeman (1987), Lundvall (1992),

Nelson (1993), and Metcalfe (1995). Their defimsoof the NSI share some common points.



They all emphasize on the network of institutiortsge interactions determine the performance
of technology development and diffusion, and therdmating role of the government in

influencing these interactions.

Unlike the epidemic models assuming that poterathipters will use the technology once
they learn about it, a few models focus on the efairkermediated effects. The technology
adoption is modeled as an individual choice basegrofitability consideration. Therefore, it is
the expected net gain rather than information aifjom that determines the adoption decision.
Three effects are identified in the literature:kaffect, stock effect and order effect (Karshenas

and Stoneman 1993).

Therank effect models, also known as Probit models, rank firmgeims of the benefit from
technology adoption, mostly determined by a firehsracteristics such as firm size, age, capital
structure, learning and search costs, switchints@sd opportunities costs. Those firms with the

highest ranks adopt the technology earlier thaersth

The game-theoritical models suggest that the sefféct and order effect may negatively
affect technology diffusion. Thaock effect assumes that the benefit to the marginal adopt&r o
new technology decreases as the number of prewddapters increases. Adoption of a cost-
reducing process technology could lead to moreymtiah by all firms in the industry, thereby
lowering prices in the output market and stimulgtitemand for the products. Consequently, for
any given cost of technology acquisition, a numtifeadopters may suffer losses if adoption is
too wide to keep a reasonable supply of their pctelReinganum 1981). Tharder effect
results from the assumption that the return tora from adopting new technology depends upon

its position in the order of adoption, with highder adopters achieving a greater return than



low-order adopters. The order effect is usuallated to first-mover advantage which can obtain
prime geographic sites or preempt the pool of effillabor. Thus, decisions of high-order

adopters can affect the adoption dates of low-cadepters (Fudenberg and Tirole 1985).

This article contributes to the literature from {herspective of analysis method and scope.
There is a limited body of literature focused onawable energy diffusion. The majority of
literature on technology diffusion mostly involveew process technologies and durable goods.
Explict modelling renewable energy diffusion isde®mmon. Karshenas and Stoneman (1993)
and Stoneman and Kwon (1996) have used a hazadidonto study these effects in the
diffusion of new process technologies. In the rgatld market, a utility-scale renewable energy
project involves new investment opportunity, mostscided by a parent company (e.g. utility
group). Additionally, given fairly homogeneous rerable technology (e.g. wind turbine and PV
panel), the project company’s characteristics mayeHittle impact on the project-specific scale.
Therefore, the hazard function may fail to dististupossible differences in the hazard rates
between the independent establishments and thake cerporate affiliation (Karshenas and
Stoneman 1993). In this study, we specify a logiddmand function on newly installed capacity
of renewable energy at continuous time, which exp)i captures two components. One
component represents the profitability effect amel dther the epidemic effect. Furthermore, we
generate a reduced form equation, relating thentdolyy adoption level to time dependence
(epidemic effect), Net Present Value (NPV) and dyaac form of NPV of renewable energy
investments (aggregating rank and order effectd)tla@ level of previous adoption (stock effect).
Our model fits well to the historical data of wipdwer diffusion in China. While the empirical
literature in technology diffusion found little sogrt for the stock and order effects, this study

may provide an empirical support of epidemic, rastgck and order effects in a real-world



renewable energy diffusion proce8e find that China’s wind energy diffusion showaaly
stronger epidemic effect and also the stock androeffects have different implications on the
profitability of investments. We also numericallgrdonstrate that to which extent an optimal

renewable subsidy will be affected by these maaket nonmarket effects.
3. Theoretical model

Following Benthem, Gillingham et al.( 2008), wesfirspecify a logistic demand function
with two components. One component captures thigtgdodity effect and the other captures the
epidemic effect. Our theoretical underpinnings rety disentangling non-market and market

intermediated factors, discussed above in the oy diffusion literature.

ap-Qmax
Q¢ = ag+(Qmax—q,).e—bNPVy

+ Dif; (1)

Where Q, is new adoption of a renewable energy technoldgygng timet > 0 in the form
of newly installed capacity at time NPV, is the net present value of the renewables invagtm
at timet to capture the profitability effectif; is technology diffusion level attributed to the
epidemic effect at time; Q™** is the maximal market potential for energy insttidin; a; is a

parameter determined by cumulative installed capatitimet; andb is a fixed parameter.

The parameten, is adjusted over time. Based on the epidemic thetr serves to
incorporate the previous time’s diffusiabif; into the current time’s base demand, accounting
for higher information penetration and decreasiaghhology uncertainty when adoption is

accumulated. The parametgrcan be expressed by

Qt—h+ Dif,_
ar = Qp_p (Tth) (2)



Whereh is a small time interval.

The second ternDif; on the right hand side of Eq. (1) represents tblertelogy deployment
attributed to the epidemic effect. It is also medebs a logistic growth function of previous

time’s demand level.
Dify =y Qe_p - (1 - %) (3)

Wherey is a fixed parameter indicating the magnitude ref epidemic effect. The epidemic
effect will asymptotically converge to zero as thew installed capacity in previous time

approaches its maximal capacity. Sitie®,_,, Q:_r = Q:, EQ. (3) can be expressed by

Dify =v-Q (1 - 55) @)
ash - 0.

Furthermore, we will decompose the profitabilitjeet into rank, stock and order effects and

derive an empirical model to test the magnitudthese effects.

Notice that Eq. (2) can be rewritten as

Dif_p
Q¢t-n

A —At—n = A¢—p

Which is equivalent to

da; 1 dlna,  Dif;
dt a, dt  0Q

Whenh — 0. By inserting Eq. (4), the above equation becomes



dinag _ Dife _ (1 O ) _dlvtl v a(fy @vatv) vy _d@S) - yhere @S, =
dt 0¢ Qmax dt Qmax dt dt Qmax gt
fot Q,dv is the cumulative capacity at time t. Hence,
(e
a, = e Q") py assuming a, = 1 andt > 0. 5)
By inserting Eq. (4) into Eg. (1) and rearrangiegns, we have
Y 2 1 _
Qmax Q:"+ (1 —-v)0; L-F(l_L).e—bNPVt =0
Qmax at Qmax
Hence, we obtain the only reasonable solution@gr
— |1 (1=¥ omax 2 1 _ 17¥ gmax
e \/4( Y ! ) * Qn%ax ’ (1/at eriax)'e_b'NPVt 2y Q (6)

If QM is large, then—— = 0. It is noted that with the regression resultobelwe can test

Qmax

the validity of this assumption.

By inserting Eq. (5) to Eq. (6), we have

QSt

ey~(t— max)+b~NPVt ~
Qt=(J1+ - -1-Zem (1)

(12__nym ax) z

In case that the ultimate market potential is lazgmpared to the technology adoption level at

e%[y~(t—%)+b~NPVt] .
the early stage; - is very close to zero, then
;Qmax
2y




1+

IR

ey.(t—Q?nSgX)+b.vat ( e%[y.(t_Q?nsgx)w.vat] )2
1+

(12__YYQmax)2

1Y ymax
2y Q

Which results Eq. (7) to

Uy (6Lt Veb-npy
Q= 62[ | 1(—2\/ m)ax t] L X Qmax = eg[y‘(t_Q?nS;X)-Fb’NPVt] (8)
WQ 2y
The double log form of Eq. (6) is
Model A1 In(Q) =y-t- s 05 + ~b - NPV,, where > 0. (9)

Eq. (9) is the basic model that we will estimatetésting the epidemic, rank, stock and order

effects. In the presence of the epidemic effee,nbwly installed capacity should show positive
time dependence. The estimated coefficient sifiould be aroun%ly. The coefficient of)S;

captures the stock effect. According to the literat the profit gain to an adopter will fall as the
number of users increases and also that later edoptll make lesser gains than earlier adopters.
Therefore, we expect this coefficient to be negatiVhe coefficient olNPV, captures the

aggregate impact of rank and order effects onxpeaed profitability of technology adoption.

To clarify, the expected profitability of a renev&lproject is measured with the net present
value \NPV,) by discounting future cash flows in comparisoratoalternative investment with
equivalent risk-return conditions, assuming fulformation and rational behavior among
investors. Consequentl¥PV, needs to be non-negative to incentivize renewatstallations.
Policy makers can alter the speed or total levalitbfision of a new technology by internalizing
positive or negative externalities associated whthtechnology adoption. With reference to the
China’s context, we assume that policy makers ogement feed-in-tariff and carbon pricing

10



policies in order to create favorable conditions ifovestors in renewable energy technology.

NPV, can be calculated by

(FITy+PEO% emissiony.y igrq . cOPeration

(1+i)"

NPV, = —clmwest  yT_, (10)

Where ¢/™est  and 2P are, respectively, capital costs and operation &nagament
(O&M) costs of renewable project at timeFiT, andPf°? denotes, respectively, the feed-in-
tariff for renewable electricity and CO2 prigegf™ission js the emissiofactor of the conventional
electricity output replaced by renewable electyigiield represents the full load operating hours
corresponding to theoretical output efficiency bynsidering wind quality and technology

performancei denoteghe investor’s discount rate anig life time of a renewable project.

NPV, is a proxy that captures the rank and order effect the expected profitability of
renewable investments. In the case of renewablegmeojects, the order effect, relative to the
first-mover advantage, mainly comes from the giteetfic characteristics and electricity
purchase price, because the earlier adopters magfibérom the most favorable sites with
higher emission intensity of the local electriciystem (z®™ission) and higher renewable
resources endowmentyfeld). Also, the earlier adopters may receive a highectedity
production subsidy FIT, ), because a periodic tariff degresssion can bdemgnted by the
regulator. The rank effect, associated with firmgécific characteristics such as size, age, and
capital structure, is mostly represented by thetalposts of a renewable projec/t’est). The
data of capital costs in our empirical part incleieénd turbine cost and also expenses related to
grid connection, civil works and other miscellane@ems. The difference in the capital costs for

a given time may be determined by firms’ charastes.

Additional to Model A expressed by Eg. (9), we veiitimate two other regression models:
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Model B:  In(Q,) = %y t— mﬁqst + %b - NPV,+ c - NPV? (11)

Model C:  In(Q) =3y-t+3b- NPV +c- NPV? (12)

In both alternative models, we introduce a quadregrm ofNPV,, which can capture the
diminishing marginal effect aV PV, on the technology adoption level. Hence, we expleet
coefficients of the quadratic term BV, to be negative. In fact, the stock effect maydftae
technology adoption through the investment proiiitgb Therefore, we remov@s, in Model C
to better understand to which extent the impa@$fonQ; is partially captured by} PV,. We

check the robustness of the empirical results ddrfvom models A, B and C.
4. Data

Models A, B and C are estimated using a panel ofipce-wide data over the period of
2004-2011. The dataset is constructed by survehi@grimary data relative to all 1207 Chinese
wind projects, either registered or undergoingdation in the Clean Development Mechanism
(CDM), as of the end of 2011. The CDM is the bigggebal carbon offset mechanism to date,
which allows industrialized countries to partly rhekeir binding commitments by earning
Certified Emission Reduction (CER) credits derivemin the mitigation projects carried out at
lower costs in developing countries. In fact, tHeMCproject participants are required to submit
a Project Design Document (PDD) that aims to demnates the project additionalityand
emission reductions. Since nearly all the wind getg in China have participated into the CDM,
the sampling bias, resulted from the dataset cocted via the CDM, does not raise a concern

for representing the whole wind energy market. Bominor of wind projects that are

! The CDM rests fundamentally on the concept of autuiity - the proposed project would not have eoed in
the absence of CDM support.
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implemented without the CDM support, the projects mostly identified as recipient of special

government funding or foreign afd.

The detailed project-specific data derived direbttyn the PDD includes installed capacity,
FIT price, capital cost, the plant load factor amdiission factor of the connected electricity grid.
The dataset of the CDM projects is classified imte of the project starting date and located
province as stated in the PDD. This study takes @mcount the sum of CDM-supported wind
capacity in each province for a given year. Acaogtli, capital cost, the plant load factor, FIT
price and emission factor used here representvibge of all CDM projects within the same
province for a given year. All prices and costséhbeen deflated to 2010 prices using the China-

specific GDP deflator published by the IMF.

The capital costs include all items of the projedtitial investment. Apart from turbine cost,
the expenses related to grid connection, civil woakd other miscellaneous items are also
included. This provides a comprehensive estimatenwéstment costs because this aspect of
expenses may represent about 24%-29% of onshock caipital costs (Wiser et al. 2011). The

operational and maintenance costs are assumepgraseant 2% of the initial investment.

The lifetime of wind projects is considered to k& y2ars. The discount rate for calculating
the NPV of wind investment is assumed to be 8% raocg to the common practice in the

Chinese market.

As stated in a vast majority of PDDs, the exped@&R price is assumed to be 100 Yuan
RMB/ton CO2, because the Chinese government has iogelementing a CER price floor

policy in the wind projects. Even though this priggnal may not fullyreflect ‘over-the-counter’

? According to the CDM rules, each CDM project netedlsompare its proposed project activity to the owm
practice in the applicable geographical area.
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trading of the CDM activities, the financial feastly study of China’'s CDM wind projects has

largely adopted this price floor to make final istraent decision.

The starting date of a CDM project activity is tlearliest date at which either the

implementation or construction or real action giraject activity beginsA vast majority of the

CDM wind projects in China have chosen the startlate as the date on which contracts have

been signed for the ordering of wind turbines omnputting to civil works. This is quite

consistent with the technology adoption concegte-decision concerning when and whether to

adopt certain technology that the firm knows tcakiailable. The CDM activities are determined

well in advance of real wind farm installatich§he CDM approval is a lengthy process - project

developers had to wait at least one year befoed &pproval by the CDM Executive Board over

our study period. Consequently, it is appropri@ednsider contemporaneous price signals in

the regression models

Table 1. Summary statistics

Variable Unit Mean Std. Dev.
NPV Yuan /KW 0.696 1.203
Cumulative capacity MW 1113.699 | 2287.368
Time duration Year 35 2.296
Capital costs of wind projects (2010 Yuan RMB) 100n/kW | 8.13 1.04

FIT price (2010 Yuan RMB) Yuan/Kwh 0.49 0.08
Plant load factor % 0.2372 0.2589
Emission factor of the electricity system Ton @gh 0.9492 0.092

5. Empirical analysis and discussion

We use the fixed effect models to estimate Model8Aand C. Each province has its own

unobserved characteristics, notably associated withd

resource endowment,

energy

* A clear determination of the project start dateital for the additionality test, because the cdasation of the
benefits of the CDM prior to this date should bendestrated by means of credible evidence.
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production and consumption patterns, infrastructorditions and institutional arrangements,
which may be constant over time and correlated \whth regressors. The fixed-effect model
enables the removal of these time-invariant arelspecific characteristics and the avoidance of

the estimation bias. The estimate results are stianv&able 1.

Table 2. Estimation results: newly installed capagh( Q.))

Variables Model A Model B Model C
Time duration ) 0.45 042 0.38
(0.05) *** (0.05) **=* (0.03) ***
Net present valueNPV,) 0.02 0.16 0.18
(0.02) (0.10) * (0.07) **
Cumulative capacityqs;) -0.00009* -0.00008
(0.00005) (0.53)
NPV? -0.04 -0.05
(0.02) ** (0.02) **=*
Constant 6.15 6.07 5.51
(0.36) *** (0.35) *** (0.28) ***
Provincial fixed effects Yes Yes Yes
Adj. R-Squared 0.733 0.744 0.745
Number of observations 117 117 144
F-test value (Model) 11.61%* 11.86%*** 14.04%**
F-test value (provincial effects) 7.05%** 6.02%** QLO3***

Note: Standard errors in parentheses. *** significat the 1% level; ** significant at the 5% levé&kignificant at the 10% level.

These results across models are complementaryl. ttreamodels, the adjusted R-squared is

acceptable at a level of around 0.74.

The estimated coefficients for time duration agistically significant, indicating that one
additional year may lead to an increase of newbtalted capacity by around 40%. In the
presence of epidemic effect, the annually instatieplacity of renewable energy shows positive
time duration dependence, as the estimates of diunation are statistically significant in all
three models. In the case of china’s wind enerdfpsion, the epidemic effect is found to be
guite strong compared to the profitability effeBased on the regression results, the coefficient

of the epidemic effecty] in Eg. (3) is estimated to be in the range o6@MA. This finding is
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consistent with our intuition. Because China’s feag in wind energy occurred when relatively
mature wind technology had already been widely usetéveloped countries, the marginal cost
reduction of technology deployment is significanttlecreasing, leading to a reducing
profitability effect. Our finding supports the damant role of the epidemic effect in inducing

wind energy diffusion in such a context.

The estimated coefficient f&fPV; is insignificant in Model A, but becomes signifitaand
relatively stable in the other two models, where tjuadratic term dfPV; is added as one of
the independent variables. This shows that in cxbetter represent newly installed capacity of
China’s wind energy, a quadratic termNifV; needs to be included in Eq. (1). With the order
effect, the most wind favorable sites will be firsted. The emissions intensive regions will also
be better incentivized to install wind projects \@acarbon pricing policy. This first-mover
advantage may exercise a negative impact on thitgtitty of future adoption, which is
embedded in NPV through output efficiengyigld) and the emission factor of the electricity
grid (me™mission)  According to Fudenberg and Tirole (1985), forgimen acquisition cost,
adoption is only profitable to some point in theler after which diffusion will only extend as
the acquisition cost falls. In the China’s wind egyesector, a FIT policy is put in place to
guarantee a stable profitability of wind investmeneér the project lifetime. The FIT prices for
new wind projects are gradually degressed givertabenology penetration levelMeanwhile
the acquisition cost of wind technology falls adlwénder these combined effects, the expected
profitability of wind investment (NPV) shows an uasd trend. Hence, we do not find that the

expected benefit to the marginal adopter of wirntht@logy decreases as the number of previous

* Over our study period, the Chinese wind power seexperienced different stages of development, fioitial

demonstration to accelerated diffusion. At the yeathge, the Chinese government granted highee fsignals,
notably through five rounds of country-wide condéessbidding programs before applying four levels tafiff

differentiated with geographical wind resourcesligya
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adopters increasesHowever, the NPV has a decreasing marginal effectvind technology

diffusion. This turning point is estimated to be\W#0.18/ (2*0.05) =1.8 in Model C.

As expected, the negative sign of cumulative capdQS;) confirms the impact of stock
effect on technology diffusion as discussed inttte®retical literature. Most of epidemic models
use existing stock of adopters to represent th@gembus information effects on technology
diffusion. However, our model explicitly specifiadime-varying baseline demand of technology
adoption to capture the epidemic effect. This makesegative stock effect more visible. Thus,
we can empirically test the negative stock effex the positive epidemic effect in a coherent
framework. Our evidence suggests that the negativek effect is largely outweighed by the
positive epidemic effect in the case of China’s dvpower deployment. It is worth noting that

this quite small magnitude of the coefficient @§, confirms the validity of our assumption on

Q™ (If Q™** is large, thean%m = 0) in Eqg. (6). This also suggests that due to gelgotential

of renewable energy resources, the stock effectitess from early-stage technology adoption

may not be very important.

Furthermore, we notice that the estimated coefficief cumulative capacitQs; is
significant in Model A, where the quadratic termN#HV; is absent, but becomes insignificant in
Model B, where the quadratic term is present. Tidgcates that a large part of the effecQ8f
has been captured by the quadratic ternNR¥,. As stated in Reinganum (1981), prices of
output product and market demand might change alatigtechnology diffusion, leading to a

negative impact on profitability of marginal adawti Our empirical results show that the stock

> Due to the intermittency and non-dispatchable ratdiwind energy, grid integration may raise a@esitechnical
problem. In fact, the Chinese grid operators haabt@ndon a significant part of wind electricityidtnoted that the
output efficiency (yield) in NPV is the theoretidaést-guess of wind power output considering wiesources
quality and technology performance at the stagevastment decision. This expected profitabilityynee reduced
if a significant loss of revenue occurs due toghd constraints.
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effect ofQS; on newly installed capacity is actually channdleebugh the project profitability.

This is further confirmed by the results in Model Izcause the coefficient 8PV;? proves

economically more important and statistically msignificant compared to Model B.

6. Numerical simulation of optimal social welfare

To further put our empirical results in the perdwecof policy implications, we numerically

simulate the optimal social welfare, dependinglenrharket and nonmarket factors.

The goal of the policy maker is to set up a timéhpaf subsidies which maximizes the

discounted present value of net social benefitsthis analysis, we assume that there are two

streams of the benefits from wind technology adwptiThe first involves the avoided external

environmental costs from fossil-fuel electricitypl@ced by wind electricity. The second takes

the form of customer benefits from policy-inducedrhing effects.

This dynamic optimization problem is summarized as:

maxs, W (S) = Xes

Where

T Q¢ (Sp){Ce*tyield+CB(St,QSy)—Se-yield}
(14r)t

(13)

Q. is the new installed capacity in year t (MW);

QS; is the cumulative installed capacity at the beigigrof year t (MW)

C®t s fixed environmental benefit (RMB Yuan/kWh);

CBq is customer benefit per kWh,;

yield is the average operational hours at the full laadHe wind power sector;
S; is the level of subsidy

Temission s the emission factor of the fossil fuel eledtyi¢ ton CO2/MWh );

r is the social discount rate;

The net level of subsidy represents the differdmetsveen the FIT price and the electricity

price from a benchmark fossil fuel source.
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S; = FIT,—Pgtec (14)
Where

» FIT, is the average feed-in tariff in the wind powerteetor the year t (RMB/kWh);
« PPfecis the average electricity price generated fromsifosources for the year
t(RMB/kWh).

The customer benefits are calculated from actuatsctor investment and operations and
maintenance (O&M) for a wind farm under the optirR&l policy in comparison to a no-policy

case. O&M costs accrue over the project lifetimeé aeed to be discounted.

Operation (no policy) Operation
Gt —C

CB, = [anvest (no policy) Cgm;est] + 2121(;1 (15)

(1+7)!
Where
» listhe average lifetime period of the wind farm;

With the common learning curve, we specify the staeent and O&M costs as following:

Cl{nvest — Cénvest . (%)—5 (16)
0

CtOperation — anvest ‘o (17)

Where

« cl™est and QS, are, respectively, capital costs and cumulatethliesl capacity at the
starting point;

o clmvest  and PPN are, respectively, capital costs and O&M costs dhdw
technology at year t;

» p is the learning-by-doing coefficient;

* «ais a parameter determining average annual O&Mscasta percentage of capital costs
of a wind farm.

We first calibrate the models with the base yeada d@2010. Then, we simulate two policy
scenarios from 2011 through 2030 by setting upefhidemic effect coefficient as= 0.75 and
y = 0.05, respectively. The FIT subsidy and lifetime of thind projects are assumed to be 20

years in China’s context.
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It is worth noting that based on our empirical lssuwve add the quadratic term of NPV in

Eq. (1) to better simulate stock and order effectsthe demand function. Thu® =

a,-QMex )
: -+ Dif .

at+(Qmax_at) .e—b-NPVi+c-NPV¢

The wind project yields environmental benefits oNgiifetime. Since electricity generation
heavily depends on coal, we assume that the emagatal benefits of wind-generated electricity
come from the replacement of coal-generated et#gtriThis externality involves the total costs
occurred in the life cycle of the coal power planbm coal mining, washing, transport, to air
pollution gases like SO2, NOx, Particulates, argb ahcludes the climate damage caused by
CO2 emissions. The environment benefits associaittdCO?2 emissions are estimated based on
Euros 20/ton CO2e. The costs of other pollutanés kEsed on the specific Chinese values.
According to Zhu et al. (2008), the total enviromta¢ benefits are estimated to be Euro 0.0254

/kWh (RMB Yuan 0.27/kWh with an exchange rate of7/B0Yuan/Euro in 2010).

The EU Directive in 2009 stipulated that the credlibm the CDM projects registered from 1
January 2013 onward would be prohibited in thedtlphase of the EU Emissions Trading
Scheme (ETS), with the exception of those from ldzst developed countries. Therefore, we
assume that the CO2 price for the wind projectsallesl after 2013 will become null. This
supposes that the feed-in-tariff will be the salbssdy to support the wind power investments in

China.

Relying on the same panel dataset, we empiricaliynate the learning rate of wind energy
in China. The learning coefficientt) is estimated to be 0.066, which leads to a learnate of

4.4%. Our estimate is in the low range of “ruletmiimb” learning estimates for renewable
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energy technologies. This may reflect the fact tdae to the maturity of onshore wind

technology, the marginal cost reduction effect fribie technology deployment is decreasing.

The key parameters used in our simulation are aygol below in Tab. 3.

Table 3. Parameter values in the simulation

Parametel Value Unit
Cumulated installed capacity by the end of - 44,733 MW
Installed capacity in 20: 18,92¢ MW
Capital cost in 201 9,500 RMB/kW
Lifetime of the wind farn 2C Yeal
Average Fee-in tariff (net VAT) 0.53: RMB/kWh
Fossil fuel electricity price in 20. 0.40 RMB/kWh
Annual growth rate of fossil fuel electric price 2%

Carbon price 10C (=0 after 2012 | RMB/ton CO:
Emission factor of the coal power ple 0.82 ton CO2/MW!I
Yield (full load operating hour 2,01t Hours/yeal
Environmental externality co 0.27 Yuan/kWt
Maximum annual installed capac 5(,00C MW
Learning coefficien 0.06¢

Ratio O&M costs/capital cos 2%

Social discount ra 3%

Investment discount ra 8%

Demand function parametey 784(

Coefficient of NP\ (b) 0.3t

Coefficient of NPV*; (b) -0.05

Parameter of the epidemic effgct 0.75 or 0.0t

Depending on the different values of the epiderffiece we simulate the optimal social welfare,
annually installed wind capacity, environmental dfés, customer benefits and subsidy cost,

respectively. The results are detailed below.
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Table 4. Optimal social welfare (Unit= billion RMB)

y =0.0¢

3487

y =0.7¢

8642

:MW

Figure 1. Annually installed wind capacity (Unit

60000

50000

40000

30000 -

20000 -

my=0.75 my=0.05

billion

Figure 2. Environmental benefits, customer beneifitd subsidy costy €0.75, Unit

RMB)

= Subsidy cost

B Customer benefits

B Environmental benefits
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Figure 3. Environmental benefits, customer beneifitd subsidy costy €0.05, Unit=billion

RMB)

300
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200 -
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100 -
50 -

-50 ¥
-100

B Environmental benefits B Customer benefits = Subsidy cost

Figure 4. Optimal subsidy of newly installed capgci
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7. Conclusion
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In this article, we develop a theoretical model abhincorporates market and nonmarket
effects in technology diffusion. With a panel dafaChina’s wind energy sector, the model is
used to test for and estimate the magnitude ofeepici stock, order and rank effects. Our model
can be generalized to any geographical context with renewable resources endowment,
because we assume that relative to the early amgpghe market potential of renewable energy
endowment is large enough to derive a reduced fafrthe empirical model. Thus, we do not
need to compile a dataset on the complete lifeecyfl technology diffusion to undertake

empirical research on diffusion of new technologies

We find that the epidemic effect may significanthfluence the pattern of renewable
technology diffusion. In the case of China’s wingmer diffusion, the evidence shows that the
epidemic effect outweighs the profitability effedthis implies that policy instruments can
internalize positive (learning-by-doing) and negat{carbon emissions) externalities to obtain
an overall effect on adoption that is greater thfa@ir direct effects, since the new adopters
induce others to adopt as well. The cumulative hpd subsidies in forms of feed-in-tariff or
carbon price will be significantly greater than ithenmediate impact. Our simulation further
demonstrates that such epidemic effect can playaatgatively important role in the spread of

renewable energy technology and markedly enharceptimal social welfare.

This finding has important policy implications omoosing two most commonly used
instruments to induce technology diffusion - infation provision and subsidies. Our study
suggests that the epidemic effect is not derivethfthe traditional market failure-based policy
perspective. It may be largely reflected in theoapsve capacity, user-innovator interaction, and
institutional cooperation. Understanding the sosiroé this epidemic effect may change the

justification of choosing policy instruments. Wightraditional market failure approach, policy
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intervention always aims to internalize externasitiHowever, with a systemic approach of a
national innovation system, such policies may haset of different goals, such as facilitating
the knowledge creation and exchange, achievingtutishal coordination not provided by the

market, or increasing the cognitive capacity ahsr

In the context of renewable energy market, we ssigtigt this information effect is more
likely to be formed and conveyed within a technglaiffusion system: network of agents
interacting in a technology area under a particudatitutional infrastructure for the purpose of
generating, diffusing and using technology (Jacblale 2004). The policy makers need to

strengthen this technology diffusion system togetvith existing subsidies.

We also provide empirical evidence on the exist@icock and order effects on renewable
technology diffusion. Depending on the national tesh and regulatory characteristics of the
electricity market, the stock and order effects mayt necessarily reduce the expected
profitability of marginal adoption of renewable beology. However, we find that the
profitability of wind investment has a decreasingrginal effect to encourage newly installed

capacity.

Based only on the wind power sector in China, thepigcal part of our work could be
extended by considering more a wider range of t@dges and in yet other countries with the
help of a richer panel dataséitmay be also of great help to compare the originthe epidemic

effect in different national innovation contexts.
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