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Abstract  

In this article we construct a theoretical model that disentangles the epidemic effect and 

profitability effect in the renewable energy diffusion. A reduced form of this model, that 

incorporates the main factors discussed in different theories of technology diffusion, is applied to 

data on wind energy diffusion in China. We find strong evidence in support of the dominant role 

of the epidemic effect. We also provide new evidence on stock and order effects that generate a 

reducing marginal effect of profitability in inducing technology adoption. Our numerical 

simulation demonstrates that such epidemic effect can play a quantitatively important role in the 

spread of renewable energy technology and markedly enhance the optimal social welfare. Our 

findings convey important policy implications for regulators when choosing two most commonly 

used instruments to induce technology diffusion - information provision and subsidies.  

 

Key words: Technology diffusion, Incentive policies, Renewable energy, Technological change 
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1. Introduction  

Addressing increasing environmental and energy concerns needs to accelerate technological 

change around the world. A technology can have a significant impact on the economy only if it is 

widely adopted by producers and accepted by consumers. The question remains open – How will 

a renewable energy technology, once introduced, diffuse at a reasonably rapid pace?   

The wind power sector in China provides a stylized fact. Even though China had virtually no 

wind power capacity in 2001, the country has led the global wind market with the highest 

installed capacity since 2010. As one of relatively mature renewable technologies, wind energy 

technology showed two deployment paths in the past decade. While most countries have failed to 

accelerate wind technology diffusion, China’s wind energy has been surging. Some questions 

arise. How could an economy catch up a technology so rapidly? Are there any specifics on the 

pattern of technological change? What are the quantitative effects of various factors? 

To answer these questions, a vast literature provides two key concepts. One is based on the 

economic rationale. By correcting market failure, policy intervention brings the system to its 

optimal state, where social costs equal social benefits. The other is derived from the spread of 

information. The technological change is a result of an interactive process that involves many 

actors at the micro level. With a more systemic approach, this literature highlights the role of the 

national innovation system that governs in fact these interactions. It still lacks a concrete theory 

and empirical framework of investigating these market and nonmarket-based forces in a 

comprehensive manner. This article aims to fill in this gap and support improved policy decision 

making in the choice of policy instruments. 
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In this article, we develop a model that incorporates the main theoretical streams in the 

technology diffusion literature – epidemic, rank, stock and order effects. Then, we validate the 

model with the historical data of the China’s wind energy sector. Finally, depending on these 

market and nonmarket factors, we numerically simulate the pathways of optimal subsidy in the 

form of electricity production subsidy for maximizing the social welfare in the china’s context. 

2. Epidemic, rank, stock and order effects in the literature of technology diffusion  

As defined by the well-known Schumpeterian trilogy of technological change, technology 

diffusion is the process of gradual adoption of a new technology by an economy (Schumpeter, 

1934). This process is generally analyzed within two theoretical frameworks: nonmarket 

intermediated (or information based) and market intermediated (or pecuniary) approaches. 

Nonmarket approach relies on an analog to the spread of an epidemic. The more firms/people 

are “infected” (those that have adopted the technology), the more likely the others will also be 

“infected”. Adoption occurs once potential adopters become aware of the new technology. 

Increasing spread of information between previous and potential adopters reduces the uncertainty 

surrounding the technology and leads further rapid adoption. Earlier works used probability 

density functions and Bass models to develop the concept of information acquisition (Mansfield 

1963; Bass 1969, 2004). All these epidemic-type models specify an S-shaped curve of 

technology diffusion: the number of adopters will increase over time while the adoption process 

is accelerated initially and then decelerated until the satiation point is reached. 

This epidemic effect is likely to be systemic and related to the national systems of innovation 

(NSI). The concept of the NSI was developed successively by Freeman (1987), Lundvall (1992), 

Nelson (1993), and Metcalfe (1995). Their definitions of the NSI share some common points. 
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They all emphasize on the network of institutions whose interactions determine the performance 

of technology development and diffusion, and the coordinating role of the government in 

influencing these interactions.  

Unlike the epidemic models assuming that potential adopters will use the technology once 

they learn about it, a few models focus on the market-intermediated effects. The technology 

adoption is modeled as an individual choice based on profitability consideration. Therefore, it is 

the expected net gain rather than information acquisition that determines the adoption decision. 

Three effects are identified in the literature: rank effect, stock effect and order effect (Karshenas 

and Stoneman 1993).  

The rank effect models, also known as Probit models, rank firms in terms of the benefit from 

technology adoption, mostly determined by a firm’s characteristics such as firm size, age, capital 

structure, learning and search costs, switching costs and opportunities costs. Those firms with the 

highest ranks adopt the technology earlier than others.  

The game-theoritical models suggest that the stock effect and order effect may negatively 

affect technology diffusion. The stock effect assumes that the benefit to the marginal adopter of a 

new technology decreases as the number of previous adopters increases. Adoption of a cost-

reducing process technology could lead to more production by all firms in the industry, thereby 

lowering prices in the output market and stimulating demand for the products. Consequently, for 

any given cost of technology acquisition, a number of adopters may suffer losses if adoption is 

too wide to keep a reasonable supply of their products (Reinganum 1981). The order effect 

results from the assumption that the return to a firm from adopting new technology depends upon 

its position in the order of adoption, with high-order adopters achieving a greater return than 
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low-order adopters. The order effect is usually related to first-mover advantage which can obtain 

prime geographic sites or preempt the pool of skilled labor. Thus, decisions of high-order 

adopters can affect the adoption dates of low-order adopters (Fudenberg and Tirole 1985).   

This article contributes to the literature from the perspective of analysis method and scope. 

There is a limited body of literature focused on renewable energy diffusion. The majority of 

literature on technology diffusion mostly involves new process technologies and durable goods. 

Explict modelling renewable energy diffusion is less common. Karshenas and Stoneman (1993) 

and Stoneman and Kwon (1996) have used a hazard function to study these effects in the 

diffusion of new process technologies. In the real-world market, a utility-scale renewable energy 

project involves new investment opportunity, mostly decided by a parent company (e.g. utility 

group). Additionally, given fairly homogeneous renewable technology (e.g. wind turbine and PV 

panel), the project company’s characteristics may have little impact on the project-specific scale. 

Therefore, the hazard function may fail to distinguish possible differences in the hazard rates 

between the independent establishments and those with corporate affiliation (Karshenas and 

Stoneman 1993). In this study, we specify a logistic demand function on newly installed capacity 

of renewable energy at continuous time, which explicitly captures two components. One 

component represents the profitability effect and the other the epidemic effect. Furthermore, we 

generate a reduced form equation, relating the technology adoption level to time dependence 

(epidemic effect), Net Present Value (NPV) and  quadratic form of NPV of renewable energy 

investments (aggregating rank and order effects) and the level of previous adoption (stock effect). 

Our model fits well to the historical data of wind power diffusion in China. While the empirical 

literature in technology diffusion found little support for the stock and order effects, this study 

may provide an empirical support of epidemic, rank, stock and order effects in a real-world 
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renewable energy diffusion process. We find that China’s wind energy diffusion shows a fairly 

stronger epidemic effect and also the stock and order effects have different implications on the 

profitability of investments. We also numerically demonstrate that to which extent an optimal 

renewable subsidy will be affected by these market and nonmarket effects.  

3. Theoretical model  

Following Benthem, Gillingham et al.( 2008), we first specify a logistic demand function 

with two components. One component captures the profitability effect and the other captures the 

epidemic effect. Our theoretical underpinnings rely on disentangling non-market and market 

intermediated factors, discussed above in the technology diffusion literature. 

	Q� = ��·�	
�
���(�	
����)·���·���� 	 + 	����    (1) 

Where 	Q� is new adoption of a renewable energy technology at any time � ≥ 0 in the form 

of newly installed capacity at time 	�; �� � is the net present value of the renewables investment 

at time � to capture the profitability effect; 	���� is technology diffusion level attributed to the 

epidemic effect at time �; !"�# is the maximal market potential for energy installation;  $� is a 

parameter determined by cumulative installed capacity at time �; and % is a fixed parameter. 

The parameter $�  is adjusted over time. Based on the epidemic theory, it serves to 

incorporate the previous time’s diffusion 	���� into the current time’s base demand, accounting 

for higher information penetration and decreasing technology uncertainty when adoption is 

accumulated. The parameter $� can be expressed by 

$� =	$��& · '���()	*+,��(���( -						   (2) 
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Where ℎ is a small time interval. 

The second term 	���� 	on the right hand side of Eq. (1) represents the technology deployment 

attributed to the epidemic effect. It is also modeled as a logistic growth function of previous 

time’s demand level. 

	Dif� = γ · Q��& · '1 − 56�(5789-		   (3) 

Where	γ is a fixed parameter indicating the magnitude of the epidemic effect. The epidemic 

effect will asymptotically converge to zero as the new installed capacity in previous time 

approaches its maximal capacity. Since	lim<→> Q��& → Q�, Eq. (3) can be expressed by 

���� = γ · !� '1 − ��5789-	   (4) 
as ℎ → 0. 

Furthermore, we will decompose the profitability effect into rank, stock and order effects and 

derive an empirical model to test the magnitude of these effects.  

Notice that Eq. (2) can be rewritten as  

$� − $��& = $��& 	 	�����&!��&  

Which is equivalent to 

@$�@� 1$� = @AB$�@� = 	 	����!�  

When ℎ → 0. By inserting Eq. (4), the above equation becomes 
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CDE��C� = 	 	FGH��� = γ · '1 − ��5789- = CIJ·�KC� − J5789
C'L �MCN�O -

C� = CIJ·�KC� − J5789 C(�P�)C� , where !Q� =
L !N@R�>  is the cumulative capacity at time t. Hence,  

  $� =	SJ·'�� TU�V789-		%W	$XXYZ�B[	$> = 1 and � ≥ 0.   (5) 

By inserting Eq.  (4) into Eq.  (1) and rearranging terms, we have 

γQ\]^ !�_ + (1 − γ)!� − 11!"�# + ' 1$� − 1!"�#- · S�`·abc� 	 = 0 

Hence, we obtain the only reasonable solution for 	Q�, 

	Q� = def 'e�JJ Q\]^-_ + egT	
��'e/��� gT	
�-·���·���� 	 − e�J_J Q\]^   (6) 

If !"�# is large, then 	 e�	
� ≅ 0 . It is noted that with the regression results below, we can test 

the validity of this assumption.    

By inserting Eq. (5) to Eq. (6), we have  

	Q� = (d1 + �j·k�� TU�V789l)�·����
'g�jmj 5789-m − 1) ∙ e�J_J Q\]^    (7) 

In case that the ultimate market potential is large compared to the technology adoption level at 

the early stage, 
�gmoj·k�� TU�V789l)�·����p	

g�jmj 5789  is very close to zero, then   
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1 + �j·k�� TU�V789l)�·����
'g�jmj 5789-m ≅ q1 + �gmoj·k�� TU�V789l)�·����p	

g�jmj 5789 r
_
       

Which results Eq. (7) to 

 	Q� ≅ �gmoj·k�� TU�V789l)�·����p
g�jmj 5789 ∙ e�J_J Q\]^ = SgmsJ·'�� TU�V789-�`·abc�t												  (8) 

The double log form of Eq. (6) is 

Model A: ln	(	Q�) ≅ e_ γ · t − J_5789 !Q� + e_ % · �� �, where� ≥ 0.                (9)  

Eq. (9) is the basic model that we will estimate for testing the epidemic, rank, stock and order 

effects. In the presence of the epidemic effect, the newly installed capacity should show positive 

time dependence. The estimated coefficient of � should be around	e_ γ. The coefficient of !Q� 
captures the stock effect. According to the literature, the profit gain to an adopter will fall as the 

number of users increases and also that later adopters will make lesser gains than earlier adopters. 

Therefore, we expect this coefficient to be negative. The coefficient of �� �  captures the 

aggregate impact of rank and order effects on the expected profitability of technology adoption.  

To clarify, the expected profitability of a renewable project is measured with the net present 

value (NPV�) by discounting future cash flows in comparison to an alternative investment with 

equivalent risk-return conditions, assuming full information and rational behavior among 

investors. Consequently, NPV� needs to be non-negative to incentivize renewable installations. 

Policy makers can alter the speed or total level of diffusion of a new technology by internalizing 

positive or negative externalities associated with the technology adoption. With reference to the 

China’s context, we assume that policy makers can implement feed-in-tariff and carbon pricing 
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policies in order to create favorable conditions for investors in renewable energy technology. 

NPV�  can be calculated by 

�� � = −z�{EN�|� +∑ (~{���b���m·��	+��+��)·�G�DC�������
�+��(e�G)��E�e    (10) 

Where z�{EN�|�   and z�������G�E	are, respectively, capital costs and operation & management 

(O&M) costs of renewable project at time t; ����	 and ����_ denotes, respectively, the feed-in-

tariff for renewable electricity and CO2 price; ��"G||G�E is the emission factor of the conventional 

electricity output replaced by renewable electricity; W�SA@ represents the full load operating hours 

corresponding to theoretical output efficiency by considering wind quality and technology 

performance; � denotes the investor’s discount rate and t is life time of a renewable project.  

NPV� is a proxy that captures the rank and order effects on the expected profitability of 

renewable investments. In the case of renewable energy projects, the order effect, relative to the 

first-mover advantage, mainly comes from the site-specific characteristics and electricity 

purchase price, because the earlier adopters may benefit from the most favorable sites with 

higher emission intensity of the local electricity system ( ��"G||G�E ), and higher renewable 

resources endowment ( W�SA@ ). Also, the earlier adopters may receive a higher electricity 

production subsidy ( ���� 	 ), because a periodic tariff degresssion can be implemented by the 

regulator. The rank effect, associated with firms’ specific characteristics such as size, age, and 

capital structure, is mostly represented by the capital costs of a renewable project (z�{EN�|�). The 

data of capital costs in our empirical part includes wind turbine cost and also expenses related to 

grid connection, civil works and other miscellaneous items. The difference in the capital costs for 

a given time may be determined by firms’ characteristics.  

Additional to Model A expressed by Eq. (9), we will estimate two other regression models: 
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Model B:  ln	(	Q�) ≅ e_ γ · t − J_5789 !Q� + e_ % · �� �+ c · �� �2              (11) 

Model C:  ln	(	Q�) ≅ e_ γ · t + e_% · �� �+ c · �� �2      (12) 

In both alternative models, we introduce a quadratic term of �� �, which can capture the 

diminishing marginal effect of �� � on the technology adoption level. Hence, we expect the 

coefficients of the quadratic term of �� � to be negative. In fact, the stock effect may affect the 

technology adoption through the investment profitability. Therefore, we remove !Q� in Model C 

to better understand to which extent the impact of !Q� on Q� is partially captured by �� �. We 

check the robustness of the empirical results derived from models A, B and C. 

4. Data 

Models A, B and C are estimated using a panel of province-wide data over the period of 

2004-2011. The dataset is constructed by surveying the primary data relative to all 1207 Chinese 

wind projects, either registered or undergoing validation in the Clean Development Mechanism 

(CDM), as of the end of 2011. The CDM is the biggest global carbon offset mechanism to date, 

which allows industrialized countries to partly meet their binding commitments by earning 

Certified Emission Reduction (CER) credits derived from the mitigation projects carried out at 

lower costs in developing countries. In fact, the CDM project participants are required to submit 

a Project Design Document (PDD) that aims to demonstrate the project additionality1  and 

emission reductions. Since nearly all the wind projects in China have participated into the CDM, 

the sampling bias, resulted from the dataset constructed via the CDM, does not raise a concern 

for representing the whole wind energy market. For a minor of wind projects that are 

                                                           
1
 The CDM rests fundamentally on the concept of additionality - the proposed project would not have occurred in 

the absence of CDM support. 
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implemented without the CDM support, the projects are mostly identified as recipient of special 

government funding or foreign aid.2 

The detailed project-specific data derived directly from the PDD includes installed capacity, 

FIT price, capital cost, the plant load factor and emission factor of the connected electricity grid. 

The dataset of the CDM projects is classified in terms of the project starting date and located 

province as stated in the PDD. This study takes into account the sum of CDM-supported wind 

capacity in each province for a given year. Accordingly, capital cost, the plant load factor, FIT 

price and emission factor used here represent the average of all CDM projects within the same 

province for a given year. All prices and costs have been deflated to 2010 prices using the China-

specific GDP deflator published by the IMF. 

The capital costs include all items of the project’s initial investment. Apart from turbine cost, 

the expenses related to grid connection, civil works and other miscellaneous items are also 

included. This provides a comprehensive estimate of investment costs because this aspect of 

expenses may represent about 24%-29% of onshore wind capital costs (Wiser et al. 2011). The 

operational and maintenance costs are assumed to represent 2% of the initial investment.   

The lifetime of wind projects is considered to be 20 years. The discount rate for calculating 

the NPV of wind investment is assumed to be 8% according to the common practice in the 

Chinese market.  

As stated in a vast majority of PDDs, the expected CER price is assumed to be 100 Yuan 

RMB/ton CO2, because the Chinese government has been implementing a CER price floor 

policy in the wind projects. Even though this price signal may not fully reflect ‘over-the-counter’ 

                                                           
2
 According to the CDM rules, each CDM project needs to compare its proposed project activity to the common 

practice in the applicable geographical area. 
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trading of the CDM activities, the financial feasibility study of China’s CDM wind projects has 

largely adopted this price floor to make final investment decision.  

The starting date of a CDM project activity is the earliest date at which either the 

implementation or construction or real action of a project activity begins. A vast majority of the 

CDM wind projects in China have chosen the starting date as the date on which contracts have 

been signed for the ordering of wind turbines or committing to civil works. This is quite 

consistent with the technology adoption concept – the decision concerning when and whether to 

adopt certain technology that the firm knows to be available. The CDM activities are determined 

well in advance of real wind farm installations.3 The CDM approval is a lengthy process - project 

developers had to wait at least one year before final approval by the CDM Executive Board over 

our study period. Consequently, it is appropriate to consider contemporaneous price signals in 

the regression models. 

Table 1. Summary statistics 

Variable Unit  Mean Std. Dev. 

NPV  Yuan /KW 0.696 1.203 
Cumulative capacity  MW 1113.699 2287.368 

Time duration  Year 3.5 2.296 

Capital costs of wind projects (2010 Yuan RMB) 1000 Yuan/kW 8.13 1.04 

FIT price (2010 Yuan RMB) Yuan/Kwh 0.49 0.08 

Plant load factor  % 0.2372 0.2589 

Emission factor of the electricity system   Ton CO2/Kwh 0.9492 0.092 

 

5. Empirical analysis and discussion  

We use the fixed effect models to estimate Models A, B and C. Each province has its own 

unobserved characteristics, notably associated with wind resource endowment, energy 

                                                           
3
 A clear determination of the project start date is vital for the additionality test, because the consideration of the 

benefits of the CDM prior to this date should be demonstrated by means of credible evidence. 
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production and consumption patterns, infrastructure conditions and institutional arrangements, 

which may be constant over time and correlated with the regressors. The fixed-effect model 

enables the removal of these time-invariant and site specific characteristics and the avoidance of 

the estimation bias. The estimate results are showed in Table 1.  

Table 2. Estimation results: newly installed capacity (ln	(	Q�)) 
Variables Model A 

 
Model B 
 

Model C 

Time duration (t)  0.45                      
(0.05) *** 

0.42                         
(0.05) *** 

0.38                         
(0.03) *** 

Net present value (NPV�) 0.02                          
(0.02) 

0.16                    
(0.10) * 

0.18                          
(0.07) ** 

Cumulative capacity (QS�) -0.00009*                       
(0.00005) 

-0.00008                        
(0.53) 

 

�� �_  -0.04 
(0.02) ** 

-0.05                    
(0.02) *** 

Constant  6.15                          
(0.36) *** 

6.07                            
(0.35) *** 

5.51                           
(0.28) *** 

Provincial fixed effects Yes Yes Yes 

Adj. R-Squared  
Number of observations  

0.733 
117 

0.744 
117 

0.745 
144 

F-test value (Model) 11.61*** 11.86*** 14.04*** 
F-test value (provincial effects) 7.05*** 6.02*** 10.03*** 

Note: Standard errors in parentheses. *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level. 

 

These results across models are complementary. In all the models, the adjusted R-squared is 

acceptable at a level of around 0.74.  

The estimated coefficients for time duration are statistically significant, indicating that one 

additional year may lead to an increase of newly installed capacity by around 40%. In the 

presence of epidemic effect, the annually installed capacity of renewable energy shows positive 

time duration dependence, as the estimates of time duration are statistically significant in all 

three models. In the case of china’s wind energy diffusion, the epidemic effect is found to be 

quite strong compared to the profitability effect. Based on the regression results, the coefficient 

of the epidemic effect (γ) in Eq. (3) is estimated to be in the range of 0.76-0.9. This finding is 
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consistent with our intuition. Because China’s leapfrog in wind energy occurred when relatively 

mature wind technology had already been widely used in developed countries, the marginal cost 

reduction of technology deployment is significantly decreasing, leading to a reducing 

profitability effect. Our finding supports the dominant role of the epidemic effect in inducing 

wind energy diffusion in such a context.  

The estimated coefficient for NPV� is insignificant in Model A, but becomes significant and 

relatively stable in the other two models, where the quadratic term of NPV�	 is added as one of 

the independent variables. This shows that in order to better represent newly installed capacity of 

China’s wind energy, a quadratic term of NPV� needs to be included in Eq. (1). With the order 

effect, the most wind favorable sites will be first used. The emissions intensive regions will also 

be better incentivized to install wind projects via a carbon pricing policy. This first-mover 

advantage may exercise a negative impact on the profitability of future adoption, which is 

embedded in NPV through output efficiency (W�SA@) and the emission factor of the electricity 

grid (��"G||G�E ). According to Fudenberg and Tirole (1985), for a given acquisition cost, 

adoption is only profitable to some point in the order after which diffusion will only extend as 

the acquisition cost falls. In the China’s wind energy sector, a FIT policy is put in place to 

guarantee a stable profitability of wind investment over the project lifetime. The FIT prices for 

new wind projects are gradually degressed given the technology penetration level4. Meanwhile 

the acquisition cost of wind technology falls as well. Under these combined effects, the expected 

profitability of wind investment (NPV) shows an upward trend. Hence, we do not find that the 

expected benefit to the marginal adopter of wind technology decreases as the number of previous 

                                                           
4
 Over our study period, the Chinese wind power sector experienced different stages of development, from initial 

demonstration to accelerated diffusion. At the early stage, the Chinese government granted higher price signals, 
notably through five rounds of country-wide concession-bidding programs before applying four levels of tariff 
differentiated with geographical wind resources quality.  
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adopters increases5. However, the NPV has a decreasing marginal effect on wind technology 

diffusion. This turning point is estimated to be NPV= 0.18/ (2*0.05) =1.8 in Model C.   

As expected, the negative sign of cumulative capacity (QS�) confirms the impact of stock 

effect on technology diffusion as discussed in the theoretical literature. Most of epidemic models 

use existing stock of adopters to represent the endogenous information effects on technology 

diffusion. However, our model explicitly specifies a time-varying baseline demand of technology 

adoption to capture the epidemic effect. This makes the negative stock effect more visible. Thus, 

we can empirically test the negative stock effect and the positive epidemic effect in a coherent 

framework. Our evidence suggests that the negative stock effect is largely outweighed by the 

positive epidemic effect in the case of China’s wind power deployment. It is worth noting that 

this quite small magnitude of the coefficient of  QS� confirms the validity of our assumption on 

!"�# (If !"�# is large, then 	 e�	
� ≅ 0 ) in Eq. (6). This also suggests that due to a large potential 

of renewable energy resources, the stock effect resulted from early-stage technology adoption 

may not be very important.  

Furthermore, we notice that the estimated coefficient of cumulative capacity QS�  is 

significant in Model A, where the quadratic term of NPV� is absent, but becomes insignificant in 

Model B, where the quadratic term is present. This indicates that a large part of the effect of QS� 
has been captured by the quadratic term of NPV�. As stated in Reinganum (1981), prices of 

output product and market demand might change along with technology diffusion, leading to a 

negative impact on profitability of marginal adoption. Our empirical results show that the stock 

                                                           
5
 Due to the intermittency and non-dispatchable nature of wind energy, grid integration may raise a serious technical 

problem. In fact, the Chinese grid operators had to abandon a significant part of wind electricity. It is noted that the 
output efficiency (yield) in NPV is the theoretical best-guess of wind power output considering wind resources 
quality and technology performance at the stage of investment decision. This expected profitability may be reduced 
if a significant loss of revenue occurs due to the grid constraints. 



18 

 

effect of QS� on newly installed capacity is actually channeled through the project profitability. 

This is further confirmed by the results in Model C, because the coefficient of �� �_ proves 

economically more important and statistically more significant compared to Model B.  

6. Numerical simulation of optimal social welfare 

To further put our empirical results in the perspective of policy implications, we numerically 

simulate the optimal social welfare, depending on the market and nonmarket factors.  

The goal of the policy maker is to set up a time path of subsidies which maximizes the 

discounted present value of net social benefits. In this analysis, we assume that there are two 

streams of the benefits from wind technology adoption. The first involves the avoided external 

environmental costs from fossil-fuel electricity replaced by wind electricity. The second takes 

the form of customer benefits from policy-induced learning effects. 

This dynamic optimization problem is summarized as: 

max�� �	(Q�) = ∑ ��	(P�)·�����·�G�DC����(P�,�P�)�P�·�G�DC�(e��)����e     (13) 

Where  

• Q� is the new installed capacity in year t (MW); 

• !Q� is the cumulative installed capacity at the beginning of year t (MW) 

• C¡^� is fixed environmental benefit (RMB Yuan/kWh); 

• CB� is customer benefit per kWh; 

• yield	is the average operational hours at the full load for the wind power sector; 

• S� is the level of subsidy  

• ��"G||G�E is the emission factor of the fossil fuel electricity ( ton	CO2/MWh );  

• « is the social discount rate;  

The net level of subsidy represents the difference between the FIT price and the electricity 

price from a benchmark fossil fuel source.  
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Q� = ����−���D�¬  (14) 

Where  

• ����	is the average feed-in tariff in the wind power sector for the year t (RMB/kWh); 

• ���D�¬ is the average electricity price generated from fossil sources for the year 
t(RMB/kWh).  

The customer benefits are calculated from actual costs for investment and operations and 

maintenance (O&M) for a wind farm under the optimal FIT policy in comparison to a no-policy 

case.  O&M costs accrue over the project lifetime and need to be discounted.  

z­� = sz�{EN�|�	(E�	��DG¬�) − z�{EN�|�t +	∑ ������
�+��	(��	��®+¯°)�������
�+��(e��)®_>E�e   (15) 

Where  

• A is the average lifetime period of the wind farm; 

With the common learning curve, we specify the investment and O&M costs as following: 

z�{EN�|� = z>{EN�|� · ( 	5±6	5±O)�²   (16) 

z�������G�E = z�{EN�|� · α   (17) 

Where  

• z>{EN�|� and 	QS> are, respectively, capital costs and cumulated installed capacity at the 
starting point; 

• z�{EN�|�   and z�������G�E	 are, respectively, capital costs and O&M costs of wind 
technology at year t; 

• ´ is the learning-by-doing coefficient; 

• α is a parameter determining average annual O&M costs as a percentage of capital costs 
of a wind farm. 

We first calibrate the models with the base year data in 2010. Then, we simulate two policy 

scenarios from 2011 through 2030 by setting up the epidemic effect coefficient as γ = 0.75 and 

γ = 0.05, respectively.  The FIT subsidy and lifetime of the wind projects are assumed to be 20 

years in China’s context.  
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It is worth noting that based on our empirical results, we add the quadratic term of NPV in 

Eq. (1) to better simulate stock and order effects in the demand function. Thus, Qt = 

$�·!Z$¸
$�+(!Z$¸−$�)·S−%·�� �+¹·�� �2 	 +	����.  

The wind project yields environmental benefits over its lifetime. Since electricity generation 

heavily depends on coal, we assume that the environmental benefits of wind-generated electricity 

come from the replacement of coal-generated electricity. This externality involves the total costs 

occurred in the life cycle of the coal power plant, from coal mining, washing, transport, to air 

pollution gases like SO2, NOx, Particulates, and also includes the climate damage caused by 

CO2 emissions. The environment benefits associated with CO2 emissions are estimated based on 

Euros 20/ton CO2e. The costs of other pollutants are based on the specific Chinese values. 

According to Zhu et al. (2008), the total environmental benefits are estimated to be Euro 0.0254 

/kWh (RMB Yuan 0.27/kWh with an exchange rate of 10.75 Yuan/Euro in 2010). 

The EU Directive in 2009 stipulated that the credits from the CDM projects registered from 1 

January 2013 onward would be prohibited in the third phase of the EU Emissions Trading 

Scheme (ETS), with the exception of those from the least developed countries. Therefore, we 

assume that the CO2 price for the wind projects installed after 2013 will become null. This 

supposes that the feed-in-tariff will be the sole subsidy to support the wind power investments in 

China.   

Relying on the same panel dataset, we empirically estimate the learning rate of wind energy 

in China. The learning coefficient (α) is estimated to be 0.066, which leads to a learning rate of 

4.4%. Our estimate is in the low range of “rule-of-thumb” learning estimates for renewable 
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energy technologies. This may reflect the fact that due to the maturity of onshore wind 

technology, the marginal cost reduction effect from the technology deployment is decreasing. 

The key parameters used in our simulation are displayed below in Tab. 3.  

Table 3. Parameter values in the simulation  

Parameter Value Unit 

Cumulated installed capacity by the end of 2010 44,733  MW 

Installed capacity in 2010 18,928 MW 

Capital cost in 2010 9,500  RMB/kW 

Lifetime of the wind farm  20 Year 

Average Feed-in tariff (net VAT) 0.537 RMB/kWh 

Fossil fuel electricity price in 2010 0.40  RMB/kWh 

Annual growth rate of fossil fuel electricity price 2%  

 Carbon price  100 (=0 after 2013) RMB/ton CO2 

Emission factor of the coal power plants 0.82  ton CO2/MWh 

Yield (full load operating hours) 2,015 Hours/year  

Environmental externality cost  0.27 Yuan/kWh 

Maximum annual installed capacity  50,000 MW 

Learning coefficient  0.066   

Ratio O&M costs/capital costs  2%   

Social discount rate 3%   

Investment discount rate  8%   

Demand function parameter $> 7840  

Coefficient of NPV (b) 0.35   

Coefficient of  NPV^2 (b) -0.05  

Parameter of the epidemic effect γ 0.75 or 0.05    

 

Depending on the different values of the epidemic effect, we simulate the optimal social welfare, 

annually installed wind capacity, environmental benefits, customer benefits and subsidy cost, 

respectively.  The results are detailed below.   
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Table 4. Optimal social welfare (Unit= billion RMB) 

γ =0.75 γ =0.05 
8642 3487 

 

Figure 1. Annually installed wind capacity (Unit=MW) 

 

Figure 2. Environmental benefits, customer benefits and subsidy costs (γ =0.75, Unit=billion 

RMB) 
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Figure 3. Environmental benefits, customer benefits and subsidy costs (γ =0.05, Unit=billion 

RMB) 

 

Figure 4. Optimal subsidy of newly installed capacity  
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In this article, we develop a theoretical model which incorporates market and nonmarket 

effects in technology diffusion. With a panel data of China’s wind energy sector, the model is 

used to test for and estimate the magnitude of epidemic, stock, order and rank effects. Our model 

can be generalized to any geographical context with rich renewable resources endowment, 

because we assume that relative to the early adoption, the market potential of renewable energy 

endowment is large enough to derive a reduced form of the empirical model. Thus, we do not 

need to compile a dataset on the complete life cycle of technology diffusion to undertake 

empirical research on diffusion of new technologies.  

We find that the epidemic effect may significantly influence the pattern of renewable 

technology diffusion. In the case of China’s wind power diffusion, the evidence shows that the 

epidemic effect outweighs the profitability effect. This implies that policy instruments can 

internalize positive (learning-by-doing) and negative (carbon emissions) externalities to obtain 

an overall effect on adoption that is greater than their direct effects, since the new adopters 

induce others to adopt as well. The cumulative impact of subsidies in forms of feed-in-tariff or 

carbon price will be significantly greater than their immediate impact. Our simulation further 

demonstrates that such epidemic effect can play a quantitatively important role in the spread of 

renewable energy technology and markedly enhance the optimal social welfare.  

This finding has important policy implications on choosing two most commonly used 

instruments to induce technology diffusion - information provision and subsidies. Our study 

suggests that the epidemic effect is not derived from the traditional market failure-based policy 

perspective. It may be largely reflected in the absorptive capacity, user-innovator interaction, and 

institutional cooperation. Understanding the sources of this epidemic effect may change the 

justification of choosing policy instruments. With a traditional market failure approach, policy 
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intervention always aims to internalize externalities. However, with a systemic approach of a 

national innovation system, such policies may have a set of different goals, such as facilitating 

the knowledge creation and exchange, achieving institutional coordination not provided by the 

market, or increasing the cognitive capacity of firms. 

In the context of renewable energy market, we suggest that this information effect is more 

likely to be formed and conveyed within a technology diffusion system: network of agents 

interacting in a technology area under a particular institutional infrastructure for the purpose of 

generating, diffusing and using technology (Jacob et al. 2004). The policy makers need to 

strengthen this technology diffusion system together with existing subsidies.  

We also provide empirical evidence on the existence of stock and order effects on renewable 

technology diffusion. Depending on the national context and regulatory characteristics of the 

electricity market, the stock and order effects may not necessarily reduce the expected 

profitability of marginal adoption of renewable technology. However, we find that the 

profitability of wind investment has a decreasing marginal effect to encourage newly installed 

capacity.  

Based only on the wind power sector in China, the empirical part of our work could be 

extended by considering more a wider range of technologies and in yet other countries with the 

help of a richer panel dataset. It may be also of great help to compare the origins of the epidemic 

effect in different national innovation contexts.  
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